
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (9): 1175-1185.doi: 10.3969/j.issn.1674-8115.2023.09.012
• Evidence-based medicine • Previous Articles Next Articles
YANG Yue1,2(
), HE Kaiju3, ZONG Jiahao4, YANG Ziyi1,2, WU Xiangsong1,2, GONG Wei1,2(
)
Received:2023-05-30
Accepted:2023-08-22
Online:2023-09-28
Published:2023-09-28
Contact:
GONG Wei
E-mail:yueyueyoung@126.com;gongwei@xinhuamed.com.cn
Supported by:CLC Number:
YANG Yue, HE Kaiju, ZONG Jiahao, YANG Ziyi, WU Xiangsong, GONG Wei. Diagnostic value of cell-free DNA to biliary tract cancers: a meta-analysis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1175-1185.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.09.012
| Study | Study type | Country | Reference standard |
|---|---|---|---|
| HAN 2021[ | Prospective study | South Korea | BTC: pathological examination |
| HE 2023[ | Retrospective and prospective study | China | BTC: pathological examination; BBD: pathological examination and clinical follow-up; healthy population: pathological examination/clinical follow-up |
| HUA 2021[ | Prospective study | China | BTC: pathological examination |
| KINUGASA 2018[ | Prospective study | Japan | Pathological examination |
| KUMARI 2019[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2022[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2017[ | Retrospective study | India | Imaging/pathological examination |
| WANG 2021[ | Prospective study | China | Pathological examination |
| WASENANG 2019[ | Prospective study | Thailand | BTC: pathological examination |
| WINTACHAI 2021[ | Retrospective study | Thailand | Pathological examination |
| MO 2020[ | Retrospective study | China | BTC/BBD: imaging examination/pathological examination |
Tab 1 Basic characteristics of the included studies
| Study | Study type | Country | Reference standard |
|---|---|---|---|
| HAN 2021[ | Prospective study | South Korea | BTC: pathological examination |
| HE 2023[ | Retrospective and prospective study | China | BTC: pathological examination; BBD: pathological examination and clinical follow-up; healthy population: pathological examination/clinical follow-up |
| HUA 2021[ | Prospective study | China | BTC: pathological examination |
| KINUGASA 2018[ | Prospective study | Japan | Pathological examination |
| KUMARI 2019[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2022[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2017[ | Retrospective study | India | Imaging/pathological examination |
| WANG 2021[ | Prospective study | China | Pathological examination |
| WASENANG 2019[ | Prospective study | Thailand | BTC: pathological examination |
| WINTACHAI 2021[ | Retrospective study | Thailand | Pathological examination |
| MO 2020[ | Retrospective study | China | BTC/BBD: imaging examination/pathological examination |
| Study | Sample | Method | Sample size/n | Cut off | TP/n | FP/n | FN/n | TN/n |
|---|---|---|---|---|---|---|---|---|
| HAN 2021[ | Bile | ddPCR | 46 | 1 500 copies·mL-1 | 20 | 0 | 22 | 4 |
| Plasma | ddPCR | 20 | 60 copies·mL-1 | 3 | 0 | 13 | 4 | |
| HE 2023[ | Bile | qPCR | 188 | NA | 74 | 0 | 21 | 93 |
| Bile | NGS | 188 | NA | 80 | 2 | 15 | 91 | |
| HUA 2021[ | Serum | qPCR | 158 | 403.65 ng·mL-1 | 78 | 2 | 5 | 73 |
| Serum | qPCR | 153 | 113.82 ng·mL-1 | 83 | 0 | 0 | 70 | |
| Serum | qPCR | 158 | 364 ng·mL-1 | 76 | 7 | 7 | 68 | |
| Serum | qPCR | 153 | 96 ng·mL-1 | 83 | 0 | 0 | 70 | |
| KINUGASA 2018[ | Bile | NGS | 43 | NA | 14 | 0 | 10 | 19 |
| KUMARI 2019[ | Serum | qPCR | 96 | 406.582 5 ng·mL-1 | 48 | 5 | 12 | 31 |
| Serum | qPCR | 96 | 1 128.429 ng·mL-1 | 43 | 12 | 17 | 24 | |
| Serum | qPCR | 96 | cfDNA integrity index: 0.356 | 47 | 7 | 13 | 29 | |
| Serum | Methylated DNA Quantification Kit | 96 | Global DNA methylation: 0.713 5 | 33 | 18 | 27 | 18 | |
| KUMARI 2022[ | Serum | qPCR | 75 | 251.2 ng·mL-1 | 50 | 0 | 0 | 25 |
| KUMARI 2017[ | Serum | qPCR | 56 | 372.92 ng·mL-1 | 30 | 0 | 4 | 22 |
| Serum | qPCR | 51 | 218.55 ng·mL-1 | 34 | 0 | 0 | 17 | |
| WANG 2021[ | Plasma | Low-coverage WGS | 47 | |Z|-score in UCAD test 2.32 | 26 | 2 | 3 | 16 |
| WASENANG 2019[ | Serum | MSP | 80 | OPCML 3.24%‒50% methylation | 32 | 4 | 8 | 36 |
| Serum | MSP | 80 | HOXD9 1.56%‒50% methylation | 27 | 4 | 13 | 36 | |
| Serum | MSP | 80 | HOXA9 1.56%‒50% methylation | 19 | 15 | 21 | 25 | |
| Serum | MSP | 80 | OPCML, HOXD9 both methylated | 25 | 0 | 15 | 40 | |
| Serum | MSP | 80 | OPCML, HOXA9 both methylated | 12 | 1 | 28 | 39 | |
| Serum | MSP | 80 | HOXA9, HOXD9 both methylated | 10 | 1 | 30 | 39 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 ≥2 markers methylated | 29 | 2 | 11 | 38 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 all methylated | 9 | 0 | 31 | 40 | |
| WINTACHAI 2021[ | Plasma | qPCR | 92 | 0.217 5 ng·µL-1 | 55 | 1 | 7 | 29 |
| Plasma | qPCR | 95 | 0.338 8 ng·µL-1 | 51 | 14 | 11 | 19 | |
| MO 2020[ | Plasma | qPCR | 85 | 18.06 ng·µL-1 | 26 | 2 | 19 | 38 |
Tab 2 Collected data of the included studies
| Study | Sample | Method | Sample size/n | Cut off | TP/n | FP/n | FN/n | TN/n |
|---|---|---|---|---|---|---|---|---|
| HAN 2021[ | Bile | ddPCR | 46 | 1 500 copies·mL-1 | 20 | 0 | 22 | 4 |
| Plasma | ddPCR | 20 | 60 copies·mL-1 | 3 | 0 | 13 | 4 | |
| HE 2023[ | Bile | qPCR | 188 | NA | 74 | 0 | 21 | 93 |
| Bile | NGS | 188 | NA | 80 | 2 | 15 | 91 | |
| HUA 2021[ | Serum | qPCR | 158 | 403.65 ng·mL-1 | 78 | 2 | 5 | 73 |
| Serum | qPCR | 153 | 113.82 ng·mL-1 | 83 | 0 | 0 | 70 | |
| Serum | qPCR | 158 | 364 ng·mL-1 | 76 | 7 | 7 | 68 | |
| Serum | qPCR | 153 | 96 ng·mL-1 | 83 | 0 | 0 | 70 | |
| KINUGASA 2018[ | Bile | NGS | 43 | NA | 14 | 0 | 10 | 19 |
| KUMARI 2019[ | Serum | qPCR | 96 | 406.582 5 ng·mL-1 | 48 | 5 | 12 | 31 |
| Serum | qPCR | 96 | 1 128.429 ng·mL-1 | 43 | 12 | 17 | 24 | |
| Serum | qPCR | 96 | cfDNA integrity index: 0.356 | 47 | 7 | 13 | 29 | |
| Serum | Methylated DNA Quantification Kit | 96 | Global DNA methylation: 0.713 5 | 33 | 18 | 27 | 18 | |
| KUMARI 2022[ | Serum | qPCR | 75 | 251.2 ng·mL-1 | 50 | 0 | 0 | 25 |
| KUMARI 2017[ | Serum | qPCR | 56 | 372.92 ng·mL-1 | 30 | 0 | 4 | 22 |
| Serum | qPCR | 51 | 218.55 ng·mL-1 | 34 | 0 | 0 | 17 | |
| WANG 2021[ | Plasma | Low-coverage WGS | 47 | |Z|-score in UCAD test 2.32 | 26 | 2 | 3 | 16 |
| WASENANG 2019[ | Serum | MSP | 80 | OPCML 3.24%‒50% methylation | 32 | 4 | 8 | 36 |
| Serum | MSP | 80 | HOXD9 1.56%‒50% methylation | 27 | 4 | 13 | 36 | |
| Serum | MSP | 80 | HOXA9 1.56%‒50% methylation | 19 | 15 | 21 | 25 | |
| Serum | MSP | 80 | OPCML, HOXD9 both methylated | 25 | 0 | 15 | 40 | |
| Serum | MSP | 80 | OPCML, HOXA9 both methylated | 12 | 1 | 28 | 39 | |
| Serum | MSP | 80 | HOXA9, HOXD9 both methylated | 10 | 1 | 30 | 39 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 ≥2 markers methylated | 29 | 2 | 11 | 38 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 all methylated | 9 | 0 | 31 | 40 | |
| WINTACHAI 2021[ | Plasma | qPCR | 92 | 0.217 5 ng·µL-1 | 55 | 1 | 7 | 29 |
| Plasma | qPCR | 95 | 0.338 8 ng·µL-1 | 51 | 14 | 11 | 19 | |
| MO 2020[ | Plasma | qPCR | 85 | 18.06 ng·µL-1 | 26 | 2 | 19 | 38 |
| Subgroup | Study/n | Sensitivity (95%CI) | Specificity (95%CI) | PLR | NLR | DOR | AUC (95%CI) |
|---|---|---|---|---|---|---|---|
| Overall | 28 | 0.80 (0.67‒0.88) | 0.96 (0.92‒0.98) | 22.7 | 0.21 | 108 | 0.96 (0.94‒0.98) |
| Study type | |||||||
| Prospective study | 16 | 0.74 (0.51‒0.89) | 0.97 (0.93‒0.99) | 26.1 | 0.26 | 99 | 0.97 (0.95‒0.98) |
| Retrospective study | 10 | 0.86 (0.72‒0.93) | 0.93 (0.73‒0.99) | 12.4 | 0.15 | 81 | 0.95 (0.92‒0.96) |
| Sample size | |||||||
| >90 | 12 | 0.89 (0.78‒0.95) | 0.96 (0.83‒0.99) | 20.9 | 0.12 | 179 | 0.96 (0.94‒0.98) |
| ≤90 | 16 | 0.67 (0.47‒0.83) | 0.97 (0.92‒0.99) | 23.9 | 0.34 | 71 | 0.96 (0.94‒0.97) |
| Method | |||||||
| Gene or mutation analysis | 6 | 0.67 (0.44‒0.84) | 1.00 (0.85‒1.00) | 457.0 | 0.33 | 1 394 | 0.95 (0.93‒0.97) |
| qPCR | 13 | 0.94 (0.84‒0.98) | 0.98 (0.88‒1.00) | 38.8 | 0.06 | 644 | 0.99 (0.98‒1.00) |
| Methylation analysis | 9 | 0.51 (0.37‒0.65) | 0.94 (0.82‒0.98) | 9.2 | 0.52 | 18 | 0.77 (0.73‒0.81) |
| Sample type | |||||||
| Bile | 4 | 0.70 (0.53‒0.83) | 1.00 (0.67‒1.00) | 511.0 | 0.30 | 1 690 | 0.95 (0.92‒0.96) |
| Serum | 19 | 0.85 (0.66‒0.94) | 0.97 (0.90‒0.99) | 24.7 | 0.16 | 156 | 0.97 (0.96‒0.99) |
| Plasma | 5 | 0.72 (0.45‒0.89) | 0.92 (0.70‒0.98) | 9.4 | 0.30 | 31 | 0.91 (0.88‒0.93) |
| Control type | |||||||
| Benign biliary disease | 18 | 0.68 (0.54‒0.79) | 0.96 (0.92‒0.99) | 19.0 | 0.34 | 57 | 0.93 (0.91‒0.95) |
| Healthy population | 6 | 1.00 (0.70‒1.00) | 1.00 (0.90‒1.00) | 503.6 | 0.00 | 205 953 | 1.00 (0.99‒1.00) |
| Reference standard | |||||||
| Pathological examination | 4 | 0.82 (0.69‒0.90) | 0.93 (0.60‒0.99) | 12.3 | 0.19 | 63 | 0.90 (0.87‒0.93) |
| Pathological examination in BTC group | 16 | 0.75 (0.52‒0.89) | 0.98 (0.94‒0.99) | 33.7 | 0.26 | 130 | 0.98 (0.96‒0.99) |
| Clinical assessment | 8 | 0.87 (0.66‒0.96) | 0.95 (0.68‒0.99) | 18.2 | 0.14 | 129 | 0.96 (0.94‒0.97) |
Tab 3 Subgroup analysis
| Subgroup | Study/n | Sensitivity (95%CI) | Specificity (95%CI) | PLR | NLR | DOR | AUC (95%CI) |
|---|---|---|---|---|---|---|---|
| Overall | 28 | 0.80 (0.67‒0.88) | 0.96 (0.92‒0.98) | 22.7 | 0.21 | 108 | 0.96 (0.94‒0.98) |
| Study type | |||||||
| Prospective study | 16 | 0.74 (0.51‒0.89) | 0.97 (0.93‒0.99) | 26.1 | 0.26 | 99 | 0.97 (0.95‒0.98) |
| Retrospective study | 10 | 0.86 (0.72‒0.93) | 0.93 (0.73‒0.99) | 12.4 | 0.15 | 81 | 0.95 (0.92‒0.96) |
| Sample size | |||||||
| >90 | 12 | 0.89 (0.78‒0.95) | 0.96 (0.83‒0.99) | 20.9 | 0.12 | 179 | 0.96 (0.94‒0.98) |
| ≤90 | 16 | 0.67 (0.47‒0.83) | 0.97 (0.92‒0.99) | 23.9 | 0.34 | 71 | 0.96 (0.94‒0.97) |
| Method | |||||||
| Gene or mutation analysis | 6 | 0.67 (0.44‒0.84) | 1.00 (0.85‒1.00) | 457.0 | 0.33 | 1 394 | 0.95 (0.93‒0.97) |
| qPCR | 13 | 0.94 (0.84‒0.98) | 0.98 (0.88‒1.00) | 38.8 | 0.06 | 644 | 0.99 (0.98‒1.00) |
| Methylation analysis | 9 | 0.51 (0.37‒0.65) | 0.94 (0.82‒0.98) | 9.2 | 0.52 | 18 | 0.77 (0.73‒0.81) |
| Sample type | |||||||
| Bile | 4 | 0.70 (0.53‒0.83) | 1.00 (0.67‒1.00) | 511.0 | 0.30 | 1 690 | 0.95 (0.92‒0.96) |
| Serum | 19 | 0.85 (0.66‒0.94) | 0.97 (0.90‒0.99) | 24.7 | 0.16 | 156 | 0.97 (0.96‒0.99) |
| Plasma | 5 | 0.72 (0.45‒0.89) | 0.92 (0.70‒0.98) | 9.4 | 0.30 | 31 | 0.91 (0.88‒0.93) |
| Control type | |||||||
| Benign biliary disease | 18 | 0.68 (0.54‒0.79) | 0.96 (0.92‒0.99) | 19.0 | 0.34 | 57 | 0.93 (0.91‒0.95) |
| Healthy population | 6 | 1.00 (0.70‒1.00) | 1.00 (0.90‒1.00) | 503.6 | 0.00 | 205 953 | 1.00 (0.99‒1.00) |
| Reference standard | |||||||
| Pathological examination | 4 | 0.82 (0.69‒0.90) | 0.93 (0.60‒0.99) | 12.3 | 0.19 | 63 | 0.90 (0.87‒0.93) |
| Pathological examination in BTC group | 16 | 0.75 (0.52‒0.89) | 0.98 (0.94‒0.99) | 33.7 | 0.26 | 130 | 0.98 (0.96‒0.99) |
| Clinical assessment | 8 | 0.87 (0.66‒0.96) | 0.95 (0.68‒0.99) | 18.2 | 0.14 | 129 | 0.96 (0.94‒0.97) |
| 1 | VALLE J W, LAMARCA A, GOYAL L, et al. New horizons for precision medicine in biliary tract cancers[J]. Cancer Discov, 2017, 7(9): 943-962. |
| 2 | RIZVI S, KHAN S A, HALLEMEIER C L, et al. Cholangiocarcinoma: evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. |
| 3 | BENAVIDES M, ANTÓN A, GALLEGO J, et al. Biliary tract cancers: seom clinical guidelines[J]. Clin Transl Oncol, 2015, 17(12): 982-987. |
| 4 | EVERHART J E, RUHL C E. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas[J]. Gastroenterology, 2009, 136(4): 1134-1144. |
| 5 | WAN J C M, MASSIE C, GARCIA-CORBACHO J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA[J]. Nat Rev Cancer, 2017, 17(4): 223-238. |
| 6 | VALLE J W, KELLEY R K, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397(10272): 428-444. |
| 7 | BANALES J M, MARIN J J G, LAMARCA A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. |
| 8 | ROA J C, GARCÍA P, KAPOOR V K, et al. Gallbladder cancer[J]. Nat Rev Dis Primers, 2022, 8(1): 69. |
| 9 | 梁后杰, 秦叔逵, 沈锋, 等. CSCO胆道系统肿瘤诊断治疗专家共识(2019年版)[J]. 临床肿瘤学杂志, 2019, 24(9): 828-838. |
| LIANG H J, QIN S K, SHEN F et al. Expert consensus on diagnosis and treatment of CSCO biliary systerm tumors (2019 edition)[J]. Chinese Clinical Oncology, 2019, 24(9): 828-838. | |
| 10 | VALLE J W. Advances in the treatment of metastatic or unresectable biliary tract cancer[J]. Ann Oncol, 2010, 21(Suppl 7): vii345-vii348. |
| 11 | BLECHACZ B, KOMUTA M, ROSKAMS T, et al. Clinical diagnosis and staging of cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(9): 512-522. |
| 12 | 蔡晨, 龚伟. 胆囊癌辅助治疗的研究进展[J]. 外科理论与实践, 2021, 26(2): 167-170. |
| CAI C, GONG W. Study on gallbladder cancer adjuvant therapy[J]. Surgery Theory and Practice, 2021, 26(2): 167-170. | |
| 13 | LONE S N, NISAR S, MASOODI T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments[J]. Mol Cancer, 2022, 21(1): 79. |
| 14 | CROWLEY E, DI NICOLANTONIO F, LOUPAKIS F, et al. Liquid biopsy: monitoring cancer-genetics in the blood[J]. Nat Rev Clin Oncol, 2013, 10(8): 472-484. |
| 15 | ALIX-PANABIÈRES C, PANTEL K. Liquid biopsy: from discovery to clinical application[J]. Cancer Discov, 2021, 11(4): 858-873. |
| 16 | LEON S A, SHAPIRO B, SKLAROFF D M, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3): 646-650. |
| 17 | VESSIES D C L, GREUTER M J E, VAN ROOIJEN K L, et al. Performance of four platforms for KRAS mutation detection in plasma cell-free DNA: ddpcr, Idylla, COBAS z480 and BEAMing[J]. Sci Rep, 2020, 10(1): 8122. |
| 18 | HEITZER E, ULZ P, GEIGL J B. Circulating tumor DNA as a liquid biopsy for cancer[J]. Clin Chem, 2015, 61(1): 112-123. |
| 19 | OLMEDILLAS-LÓPEZ S, GARCÍA-ARRANZ M, GARCÍA-OLMO D. Current and emerging applications of droplet digital PCR in oncology[J]. Mol Diagn Ther, 2017, 21(5): 493-510. |
| 20 | IGNATIADIS M, SLEDGE G W, JEFFREY S S. Liquid biopsy enters the clinic: implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312. |
| 21 | SIRAVEGNA G, MUSSOLIN B, VENESIO T, et al. How liquid biopsies can change clinical practice in oncology[J]. Ann Oncol, 2019, 30(10): 1580-1590. |
| 22 | SHEN N J, ZHANG D D, YIN L, et al. Bile cell‑free DNA as a novel and powerful liquid biopsy for detecting somatic variants in biliary tract cancer[J]. Oncol Rep, 2019, 42(2): 549-560. |
| 23 | 央茂, 李永盛, 吴文广, 等. 液态活检技术在胆道肿瘤诊治中的应用进展[J]. 中华肝胆外科杂志, 2021, 27(6): 472-476. |
| YANG M, LI Y S, WU W G et al. Application progress of liquid biopsy in the diagnosis and treatment of biliary tract cancer[J]. Chinese Journal of Hepatobiliary Surgery, 2021, 27(6): 472-476. | |
| 24 | LIBERATI A, ALTMAN D G, TETZLAFF J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration[J]. BMJ, 2009, 339: b2700. |
| 25 | HAN J Y, AHN K S, KIM T S, et al. Liquid biopsy from bile-circulating tumor DNA in patients with biliary tract cancer[J]. Cancers, 2021, 13(18): 4581. |
| 26 | HE S, ZENG F X, YIN H H, et al. Molecular diagnosis of pancreatobiliary tract cancer by detecting mutations and methylation changes in bile samples[J]. EClinicalMedicine, 2023, 55: 101736. |
| 27 | HUA Y, SUN F Y, HU F, et al. Diagnostic value of quantification of circulating free DNA for gall bladder cancer using a chemiluminescence DNA biosensor system based on DNA G-quadruplex/hemin enzyme[J]. Transl Oncol, 2021, 14(1): 100928. |
| 28 | KINUGASA H, NOUSO K, AKO S, et al. Liquid biopsy of bile for the molecular diagnosis of gallbladder cancer[J]. Cancer Biol Ther, 2018, 19(10): 934-938. |
| 29 | KUMARI S, HUSAIN N, AGARWAL A, et al. Diagnostic value of circulating free DNA integrity and global methylation status in gall bladder carcinoma[J]. Pathol Oncol Res, 2019, 25(3): 925-936. |
| 30 | KUMARI S, MISHRA S, HUSAIN N, et al. Comparison of circulating DNA in malignant neoplasia from diverse locations: investigating a diagnostic role[J]. Indian J Pathol Microbiol, 2022, 65(1): 93-99. |
| 31 | KUMARI S, TEWARI S, HUSAIN N, et al. Quantification of circulating free DNA as a diagnostic marker in gall bladder cancer[J]. Pathol Oncol Res, 2017, 23(1): 91-97. |
| 32 | WANG X, FU X H, QIAN Z L, et al. Non-invasive detection of biliary tract cancer by low-coverage whole genome sequencing from plasma cell-free DNA: a prospective cohort study[J]. Transl Oncol, 2021, 14(1): 100908. |
| 33 | WASENANG W, CHAIYARIT P, PROUNGVITAYA S, et al. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases[J]. Clin Epigenetics, 2019, 11(1): 39. |
| 34 | WINTACHAI P, LIM J Q, TECHASEN A, et al. Diagnostic and prognostic value of circulating cell-free DNA for cholangiocarcinoma[J]. Diagnostics, 2021, 11(6): 999. |
| 35 | 莫迪, 李梦雨, 李华洋, 等. CA199、CEA及cfDNA的联合检测对胆管癌的辅助诊断价值[J]. 牡丹江医学院学报, 2020, 41(3): 18-21. |
| MO D, LI M Y, LI H Y, et al. Diagnostic value of combined detection of CA, CEA and plasma cell-free DNA for cholangiocarcinoma[J]. Journal of Mudanjiang Medical University, 2020, 41(3): 18-21. | |
| 36 | 张俊, 徐志伟, 李克. 诊断性试验meta分析的效应指标评价[J]. 中国循证医学杂志, 2013, 13(7): 890-895. |
| ZHANG J, XU Z W, LI K. Evaluation on the effect index of diagnostic test[J]. Chinese Journal of Evidence-Based Medicine, 2013, 13(7): 890-895. | |
| 37 | KHAN S A, TAVOLARI S, BRANDI G. Cholangiocarcinoma: epidemiology and risk factors[J]. Liver Int, 2019, 39(S1): 19-31. |
| 38 | ARRICHIELLO G, NACCA V, PARAGLIOLA F, et al. Liquid biopsy in biliary tract cancer from blood and bile samples: current knowledge and future perspectives[J]. Explor Target Antitumor Ther, 2022, 3(3): 362-374. |
| 39 | SINGH A, DWIVEDI A. Circulating miRNA and cell-free DNA as a potential diagnostic tool in early detection of biliary tract cancer: a meta-analysis[J]. Biomarkers, 2022, 27(5): 399-406. |
| 40 | 龚伟, 吴向嵩, 杨自逸. 胆囊癌转化治疗模式探索与思考[J]. 中国实用外科杂志, 2022, 42(2): 163-166. |
| GONG W, WU X S, YANG Z Y. Exploring novel therapeutic approach for advanced gallbladder cancer[J]. Chinese Journal of Practical Surgery, 2022, 42(2): 163-166. |
| [1] | XU Hanwen, CHEN Moxin, LIANG Xiaoyi, SHU Qin, NIE Wanqin, YANG Xuefeng, SHEN Minxuan, LI Xiaojing, CAO Yu, LI Lin. Research progress on intelligent diagnosis of eye diseases based on facial photos [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1249-1255. |
| [2] | HUANG Xin, LIU Jiahui, YE Jingwen, QIAN Wenli, XU Wanxing, WANG Lin. Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1009-1016. |
| [3] | ZHAO Jianlei, ZHAO Jingqi, LIU Chang, HUANG Jingjun, JIN Shengyuan. Efficacy of hydrodynamic debridement in the treatment of burns: a systematic review of randomized controlled trials [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 614-623. |
| [4] | SU Xinglei, LU Ping, PENG Junjie, WANG Zimin, SONG Ping, HAN Da. Comparison of DNA and RNA extraction efficiency from blood [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 476-486. |
| [5] | LIU Chuxuan, ZUO Jiaxin, XIONG Ping. A nomogram based on ultrasound scoring parameters and clinical indicators for differentiating primary Sjὅgren′s syndrome from IgG4-related sialadenitis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 373-380. |
| [6] | LIU Jia, REN Lingjie, SHI Minmin, TANG Xiaomei, MA Fangfang, QIN Jiejie. Identification and evaluation of COL12A1 as a novel serological diagnostic marker in pancreatic ductal adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1342-1352. |
| [7] | DU Fang, ZHOU Lingyun, CHEN Jiao, LIU Danbo, XIANG Hongxian, CHEN Haifei. A case report of relapsed and refractory multiple myeloma with multifocal extramedullary infiltration and pulmonary adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 122-128. |
| [8] | SUN Chenyin, WU Baichuan, ZHANG Huifeng, FANG Yiru, PENG Daihui. Evaluation of circadian rhythms in depression by using actigraphy: a systematic review and meta-analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 606-616. |
| [9] | GUO Yonglin, CHEN Moxin, LIU Zheyuan, LI Yifei, WANG Ziqi, SHU Qin, LI Lin. Progress in diagnosis and treatment of strabismus based on artificial intelligence technology [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 393-398. |
| [10] | YANG Jingyu, CHEN Liubao, WANG Kangtai, YANG Xingzhi, YU Haitao. Establishment and evaluation of nomogram for differential diagnosis of systemic lupus erythematosus based on laboratory indications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 204-211. |
| [11] | CHEN Hui, ZHU Weiyi, YAO Yijin. A meta-analysis of the effects of levothyroxine dose adjustment on maternal and infant outcomes in pregnant women with hypothyroidism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 906-915. |
| [12] | WANG Yingwen, LI Xiaoling, DAI Jiajia, LIU Fang, HUANG Jianfeng, WANG Libo, ZHANG Xiaobo, FENG Rui. Epidemiological characteristics and risk factors of severe asthma in children: a single-center prospective cohort study [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 665-672. |
| [13] | DANG Xiangyang, TANG Yuyi, LI Weiguo, LIU Enmei. Diagnostic value of fractional exhaled nitric oxide in predicting cough variant asthma in children with chronic cough: a systematic review and meta-analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 680-688. |
| [14] | LI Ying, TAN Yangxia, YIN Hongxin, JIANG Yanling, CHEN Li, MENG Guoyu. Research progress in the pathogenesis and prognosis of ZNF384 fusion subtype acute leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 631-640. |
| [15] | MA Zhuoran, YUAN Ancai, JIANG Huiru, CHEN Xiaoyu, ZHANG Wei, PU Jun. Meta analysis of correlation between lipid accumulation product and hypertension in Chinese adults [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 466-473. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||