
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (3): 371-375.doi: 10.3969/j.issn.1674-8115.2021.03.015
• Review • Previous Articles Next Articles
Yue-ting JIANG1(
), Jia-ying NI1, Shen-rui GUO1, Han LI1, Yu-jia ZHUANG1, Feng WANG1,2(
)
Received:2020-02-17
Online:2021-03-28
Published:2021-04-06
Contact:
Feng WANG
E-mail:syrinx@sjtu.edu.cn;wangfeng16@sjtu.edu.cn
Supported by:CLC Number:
Yue-ting JIANG, Jia-ying NI, Shen-rui GUO, Han LI, Yu-jia ZHUANG, Feng WANG. Physiological function of cholesterol sulfate and its role in related diseases[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 371-375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.03.015
| 1 | National Center for Biotechnology Information. PubChem Compound Summary for CID65076, Cholesterol sulfate[EB/OL].[2021-01-02].. |
| 2 | Koizumi M, Momoeda M, Hiroi H, et al. Expression and regulation of cholesterol sulfotransferase (SULT2B1b) in human endometrium[J]. Fertil Steril, 2010, 93(5): 1538-1544. |
| 3 | Zenri F, Hiroi H, Momoeda M, et al. Expression of retinoic acid-related orphan receptor α and its responsive genes in human endometrium regulated by cholesterol sulfate[J]. J Steroid Biochem Mol Biol, 2012, 128(1/2): 21-28. |
| 4 | Prah J, Winters A, Chaudhari K, et al. Cholesterol sulfate alters astrocyte metabolism and provides protection against oxidative stress[J]. Brain Res, 2019, 1723: 146378. |
| 5 | Strott CA, Higashi Y. Cholesterol sulfate in human physiology: what's it all about?[J]. J Lipid Res, 2003, 44(7): 1268-1278. |
| 6 | Sánchez-Guijo A, Oji V, Hartmann MF, et al. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[J]. J Lipid Res, 2015, 56(9): 1843-1851. |
| 7 | Elias PM, Williams ML, Choi EH, et al. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis[J]. Biochim Biophys Acta, 2014, 1841(3): 353-361. |
| 8 | Nagata K, Yamazoe Y. Pharmacogenetics of sulfotransferase[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 159-176. |
| 9 | Her C, Wood TC, Eichler EE, et al. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene[J]. Genomics, 1998, 53(3): 284-295. |
| 10 | Eckhart L, Tschachler E, Gruber F. Autophagic control of skin aging[J]. Front Cell Dev Biol, 2019, 7: 143. |
| 11 | Eckhart L, PLJMZeeuwen. The skin barrier: epidermis vs environment[J]. Exp Dermatol, 2018, 27(8): 805-806. |
| 12 | Feingold KR, Jiang YJ. The mechanisms by which lipids coordinately regulate the formation of the protein and lipid domains of the stratum corneum: role of fatty acids, oxysterols, cholesterol sulfate and ceramides as signaling molecules[J]. Dermatoendocrinol, 2011, 3(2): 113-118. |
| 13 | Hanley K, Wood L, Ng DC, et al. Cholesterol sulfate stimulates involucrin transcription in keratinocytes by increasing Fra-1, Fra-2, and Jun D[J]. J Lipid Res, 2001, 42(3): 390-398. |
| 14 | Denning MF, Kazanietz MG, Blumberg PM, et al. Cholesterol sulfate activates multiple protein kinase C isoenzymes and induces granular cell differentiation in cultured murine keratinocytes[J]. Cell Growth Differ, 1995, 6(12): 1619-1626. |
| 15 | Kawabe S, Ikuta T, Ohba M, et al. Cholesterol sulfate activates transcription of transglutaminase 1 gene in normal human keratinocytes[J]. J Invest Dermatol, 1998, 111(6): 1098-1102. |
| 16 | Kuroki T, Ikuta T, Kashiwagi M, et al. Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review[J]. Mutat Res, 2000, 462(2/3): 189-195. |
| 17 | Hanyu O, Nakae H, Miida T, et al. Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORα[J]. Biochem Biophys Res Commun, 2012, 428(1): 99-104. |
| 18 | Presland RB. Function of filaggrin and caspase-14 in formation and maintenance of the epithelial barrier[J]. Dermatol Sinica, 2009, 27: 1-14. |
| 19 | Wang F, Beck-García K, Zorzin C, et al. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol[J]. Nat Immunol, 2016, 17(7): 844-850. |
| 20 | Ivanisevic J, Epstein AA, Kurczy ME, et al. Brain region mapping using global metabolomics[J]. Chem Biol, 2014, 21(11): 1575-1584. |
| 21 | Diociaiuti A, Angioni A, Pisaneschi E, et al. X-linked ichthyosis: clinical and molecular findings in 35 Italian patients[J]. Exp Dermatol, 2019, 28(10): 1156-1163. |
| 22 | 郑晓草, 王剑巧, 曹先伟. X-连锁鱼鳞病[J]. 皮肤科学通报, 2020, 37(1): 36-41. |
| 23 | Fernandes NF, Janniger CK, Schwartz RA. X-linked ichthyosis: an oculocutaneous genodermatosis[J]. J Am Acad Dermatol, 2010, 62(3): 480-485. |
| 24 | Cañueto J, Ciria S, Hernández-Martín A, et al. Analysis of the STS gene in 40 patients with recessive X-linked ichthyosis: a high frequency of partial deletions in a Spanish population[J]. J Eur Acad Dermatol Venereol, 2010, 24(10): 1226-1229. |
| 25 | Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders[J]. Clin Dermatol, 2012, 30(3): 311-322. |
| 26 | Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior[J]. Curr Opin Struct Biol, 1996, 6(1): 11-17. |
| 27 | 沈怡君. Aβ蛋白在阿尔兹海默病中的损伤机制以及研究进展[J]. 中国实用神经疾病杂志, 2015, 18(1): 127-129. |
| 28 | di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond[J]. Nat Rev Neurosci, 2011, 12(5): 284-296. |
| 29 | Elbassal EA, Liu HY, Morris C, et al. Effects of charged cholesterol derivatives on Aβ40 amyloid formation[J]. J Phys Chem B, 2016, 120(1): 59-68. |
| 30 | Bi YH, Shi XJ, Zhu JJ, et al. Regulation of cholesterol sulfotransferase SULT2B1b by hepatocyte nuclear factor 4α constitutes a negative feedback control of hepatic gluconeogenesis[J]. Mol Cell Biol, 2018, 38(7): e00654-17. |
| 31 | Shi XJ, Cheng QQ, Xu LY, et al. Cholesterol sulfate and cholesterol sulfotransferase inhibit gluconeogenesis by targeting hepatocyte nuclear factor 4α[J]. Mol Cell Biol, 2014, 34(3): 485-497. |
| 32 | Paine MRL, Kim J, Bennett RV, et al. Whole reproductive system non-negative matrix factorization mass spectrometry imaging of an early-stage ovarian cancer mouse model[J]. PLoS One, 2016, 11(5): e0154837. |
| 33 | Johnson CH, Santidrian AF, LeBoeuf SE, et al. Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids[J]. Cancer Metab, 2017, 5: 9. |
| 34 | Turanli B, Karagoz K, Bidkhori G, et al. Multi-omic data interpretation to repurpose subtype specific drug candidates for breast cancer[J]. Front Genet, 2019, 10: 420. |
| 35 | Yang J, Broman MM, Cooper PO, et al. Distinct expression patterns of SULT2B1b in human prostate epithelium[J]. Prostate, 2019, 79(11): 1256-1266. |
| 36 | Park S, Song CS, Lin CL, et al. Inhibitory interplay of SULT2B1b sulfotransferase with AKR1C3 aldo-keto reductase in prostate cancer[J]. Endocrinology, 2020, 161(2): bqz042. |
| 37 | Vickman RE, Crist SA, Kerian K, et al. Cholesterol sulfonation enzyme, SULT2B1b, modulates AR and cell growth properties in prostate cancer[J]. Mol Cancer Res, 2016, 14(9): 776-786. |
| 38 | Vickman RE, Yang J, Lanman NA, et al. Cholesterol sulfotransferase SULT2B1b modulates sensitivity to death receptor ligand TNFα in castration-resistant prostate cancer[J]. Mol Cancer Res, 2019, 17(6): 1253-1263. |
| 39 | Yang XM, Du XC, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes[J]. Biochem Biophys Res Commun, 2019, 510(4): 495-500. |
| 40 | Hu L, Yang GZ, Zhang Y, et al. Overexpression of SULT2B1b is an independent prognostic indicator and promotes cell growth and invasion in colorectal carcinoma[J]. Lab Invest, 2015, 95(9): 1005-1018. |
| 41 | Hong WT, Guo FH, Yang MJ, et al. Hydroxysteroid sulfotransferase 2B1 affects gastric epithelial function and carcinogenesis induced by a carcinogenic agent[J]. Lipids Health Dis, 2019, 18(1): 203. |
| 42 | Hu RK, Huffman KE, Chu M, et al. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer[J]. J Proteome Res, 2016, 15(2): 477-486. |
| 43 | Samukange V, Yasukawa K, Inouye K. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7[J]. Biosci Biotechnol Biochem, 2014, 78(1): 41-48. |
| 44 | Yamamoto K, Miyazaki K, Higashi S. Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin[J]. J Biol Chem, 2010, 285(37): 28862-28873. |
| 45 | Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin[J]. FEBS J, 2014, 281(15): 3346-3356. |
| 46 | Prior SH, Fulcher YG, Koppisetti RK, et al. Charge-triggered membrane insertion of matrix metalloproteinase-7, supporter of innate immunity and tumors[J]. Structure, 2015, 23(11): 2099-2110. |
| 47 | Ishikawa T, Kimura Y, Hirano H, et al. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1[J]. J Biol Chem, 2017, 292(50): 20769-20784. |
| [1] | PAERHATI Nadina, ZHANG Pengshan, XU Yitian, CHEN Yunqi, HUANG Chen. Construction of a truncated cylindromatosis tumor suppressor deubiquitinase plasmid and its regulation of the phenotypes of gastric cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1149-1160. |
| [2] | WANG Jingyi, DENG Jiali, ZHU Yi, DING Xinyi, GUO Jiajing, WANG Zhongling. Experimental study on novel pH-responsive manganese-based nanoprobes for ferroptosis and magnetic resonance imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1183-1193. |
| [3] | YIN Ziming, WANG Rongqin, YANG Ziyi, LIU Yingbin, CHEN Tao, SHU Yijun, GONG Wei. Graph neural network-based auxiliary diagnostic model for gallbladder cancer on CT imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1221-1231. |
| [4] | JIANG Yi, HUANG Chenhao, LI Zhiliang, WU Junwei, ZHAO Ren, ZHANG Tao. Effect of preoperative chemotherapy combined with immunotherapy in a colorectal cancer patient with KRAS mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1256-1260. |
| [5] | HUANG Xin, LIU Jiahui, YE Jingwen, QIAN Wenli, XU Wanxing, WANG Lin. Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1009-1016. |
| [6] | ZHANG Yuqin, AIHEMAITI Yilixiati, WANG Yanli, YANG Zhi, HUANG Jian. Ubiquitination and degradation of RPTPα mediated by MARCH9 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 957-968. |
| [7] | AIMAITI Muerzhate, ZHANG Yeqian, LIU Tao, BAI Long, ZHANG Haoyu, NI Bo, GUAN Yujing, WANG Shuchang, GU Jiayi, ZHU Chunchao, XIA Xiang, ZHANG Zizhen. A comparative analysis of the short-term efficacy of robotic and laparoscopic proximal gastrectomy combined with double-flap anastomosis in the treatment of early upper gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 874-882. |
| [8] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [9] | YANG Na, LIU Junli, BAI Jing, YANG Siyi, HAN Jiming, ZHANG Huahua. HENMT1 promotes the proliferation and migration of gastric cancer by activating the PI3K-AKT-mTOR signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 717-726. |
| [10] | TANG Kairan, FENG Chengling, HAN Bangmin. Integrated single-cell and transcriptome sequencing to construct a prognostic model of M2 macrophage-related genes in prostate cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 549-561. |
| [11] | MAO Chenzhou, ZHANG Ruiyun, CHEN Haige, YIN Fangfei, ZUO Xiaolei. Framework nucleic acid-based linear amplification platform for sensitive detection of bladder cancer-related miRNAs [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 253-260. |
| [12] | DENG Jiali, GUO Jiajing, WANG Jingyi, DING Xinyi, ZHU Yi, WANG Zhongling. Self -assembled drug -loaded nanoprobes for pyroptosis sensitization and chemical exchange saturation transfer imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 271-281. |
| [13] | CHEN Jiaying, CHU Yimin, PENG Haixia. Study on prediction model and influencing factors of progression-free survival in colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 324-334. |
| [14] | ZOU Peichen, LIU Hongyu, AIHEMAITI· Ayinazhaer, ZHU Liang, TANG Yabin, LEI Huimin. Metabolic profiling of lung cancer cells with acquired resistance to sotorasib [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 138-149. |
| [15] | CHEN Yongyu, HUANG Yiren, CHEN Zheyi, ZHOU Bingqian, CHEN Shiyu, ZHENG Yingxia. Expression of serpin family E member 1 in gastric cancer and its mechanisms in promoting gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 150-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||