| [1] |
Dworkin S F, Huggins K H, Leresche L, et al. Epidemiology of signs and symptoms in temporomandibular disorders: clinical signs in cases and controls [J]. J Am Dent Assoc, 1990, 120(3): 273-81.
|
| [2] |
胡敏. 颞下颌关节骨关节炎: 认识与挑战 [J]. 中华口腔医学杂志, 2022, 57(7): 665-673.
|
|
Hu M. Temporomandibular joint osteoarthritis: recognizing and challenging [J]. Chinese Journal of Stomatology, 2022, 57(7): 665-673.
|
| [3] |
Ukita M, Matsushita K, Tamura M, et al. Histone H3K9 methylation is involved in temporomandibular joint osteoarthritis [J]. International Journal of Molecular Medicine, 2020, 45(2): 607-614.
|
| [4] |
Liu X, Cai H X, Cao P Y, et al. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice [J]. Journal of Cellular and Molecular Medicine, 2020, 24(19): 11489-11499.
|
| [5] |
Jiang H, Xu L, Liu W, et al. Chronic pain causes peripheral and central responses in MIA-induced TMJOA rats [J]. Cellular and molecular neurobiology, 2022: 1-11.
|
| [6] |
Cui S, Zhang T, Fu Y, et al. DPSCs attenuate experimental progressive TMJ arthritis by inhibiting the STAT1 pathway [J]. Journal of Dental Research, 2020, 99(4): 446-455.
|
| [7] |
Zhang C, Zhu M, Wang H, et al. LOXL2 attenuates osteoarthritis through inactivating Integrin/FAK signaling [J]. Scientific Reports, 2021, 11(1): 17020.
|
| [8] |
Liang W, Li X, Chen H, et al. Expressing human SHOX in Shox2SHOX KI/KI mice leads to congenital osteoarthritis-like disease of the temporomandibular joint in postnatal mice [J]. Molecular Medicine Reports, 2016, 14(4): 3676-3682.
|
| [9] |
Zhao Y, An Y, Zhou L, et al. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection [J]. Front Physiol, 2022, 13: 859517.
|
| [10] |
Jiang L, Li L, Geng C, et al. Monosodium iodoacetate induces apoptosis via the mitochondrial pathway involving ROS production and caspase activation in rat chondrocytes in vitro [J]. J Orthop Res, 2013, 31(3): 364-369.
|
| [11] |
Wang X D, Kou X X, He D Q, et al. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate [J]. PLoS One, 2012, 7(9): e45036.
|
| [12] |
Bousnaki M, Bakopoulou A, Grivas I, et al. Managing temporomandibular joint osteoarthritis by dental stem cell secretome [J]. Stem Cell Rev Rep, 2023, 19(8): 2957-2979.
|
| [13] |
Deng J, Fukushima Y, Nozaki K, et al. Anti-inflammatory therapy for temporomandibular joint osteoarthritis using mRNA medicine encoding interleukin-1 receptor antagonist [J]. Pharmaceutics, 2022, 14(9): 1785.
|
| [14] |
Xue X, Li C, Chen S, et al. 17β‐estradiol promotes the progression of temporomandibular joint osteoarthritis by regulating the FTO/IGF2BP1/m6A-NLRC5 axis [J]. Immunity, Inflammation and Disease, 2024, 12(8): e1361.
|
| [15] |
Yun S Y, Kim Y, Kim H, et al. Effective technical protocol for producing a mono-iodoacetate-induced temporomandibular joint osteoarthritis in a rat model [J]. Tissue Engineering Part C: Methods, 2023, 29(9): 438-445.
|
| [16] |
Kim H, Kim Y, Yun S Y, et al. Efficacy of IFN-γ-primed umbilical cord-derived mesenchymal stem cells on temporomandibular joint osteoarthritis [J]. Tissue engineering and regenerative medicine, 2024, 21(3): 473-486.
|
| [17] |
Li Y, Sun H, Liu X, et al. Transglutaminase 2 inhibitors attenuate osteoarthritic degeneration of TMJ-osteoarthritis by suppressing NF-κB activation [J]. Int Immunopharmacol, 2023, 114: 109486.
|
| [18] |
Hua B, Qiu J, Ye X, et al. Epigenetic PPARγ preservation attenuates temporomandibular joint osteoarthritis [J]. Int Immunopharmacol, 2023, 124(Pt B): 111014.
|
| [19] |
Ma Y, He F, Chen X, et al. Low-frequency pulsed electromagnetic fields alleviate the condylar cartilage degeneration and synovitis at the early stage of temporomandibular joint osteoarthritis [J]. J Oral Rehabil, 2024, 51(4): 666-676.
|
| [20] |
Mankin H J, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips: II. Correlation of morphology with biochemical and metabolic data [J]. JBJS, 1971, 53(3): 523-537.
|
| [21] |
冯㛃, 常攀辉, 张智玲, 等. 碘乙酸钠诱导大鼠颞下颌关节骨关节炎动物模型的建立[J]. 中华老年口腔医学杂志, 2024, 22(2): 101-106, 113.
|
|
Feng J, Chang P H, Zhang Z L, et al. Establishment of animal model of temporomandibular joint osteoarthritis induced by monosodium iodoacetate in rats [J]. Chinese Journal of Geriatric Dentistry, 2024, 22(2): 101-106,113.
|
| [22] |
皇甫文丽, 黄瑶, 刘波, 等. 建立大鼠颞下颌关节骨关节炎动物模型的2种方法比较[J]. 昆明医科大学学报, 2023, 44(3): 49-53.
|
|
Huangfu W L, Huang Y, Liu B, et al. Comparison of two methods of temporomandibular joint osteoarthritis in rat models [J]. Journal of Kunming Medical University 2023, 44(3): 49-53.
|
| [23] |
Cardoneanu A, Macovei L A, Burlui A M, et al. Temporomandibular joint osteoarthritis: pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration [J]. Int J Mol Sci, 2022, 24(1): 171.
|