1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
SUN Z, SUN X D, CHEN Z W, et al. Head and neck squamous cell carcinoma: risk factors, molecular alterations, immunology and peptide vaccines[J]. Int J Pept Res Ther, 2022, 28(1): 19.
|
3 |
WITTEKINDT C, WAGNER S, SHARMA S, et al. HPV-das andere kopf-Hals-karzinom[J]. Laryngo-Rhino-Otologie, 2018, 97(S 01): S48-S113.
|
4 |
WONG K C W, JOHNSON D, HUI E P, et al. Opportunities and challenges in combining immunotherapy and radiotherapy in head and neck cancers[J]. Cancer Treat Rev, 2022, 105: 102361.
|
5 |
RENÉ LEEMANS C, SNIJDERS P J F, BRAKENHOFF R H. The molecular landscape of head and neck cancer[J]. Nat Rev Cancer, 2018, 18(5): 269-282.
|
6 |
BHAT G R, HYOLE R G, LI J. Head and neck cancer: current challenges and future perspectives[J]. Adv Cancer Res, 2021, 152: 67-102.
|
7 |
TOURNEUR L, CHIOCCHIA G. FADD: a regulator of life and death[J]. Trends Immunol, 2010, 31(7): 260-269.
|
8 |
LEE E W, SEO J, JEONG M, et al. The roles of FADD in extrinsic apoptosis and necroptosis[J]. BMB Rep, 2012, 45(9): 496-508.
|
9 |
LIU Y, LI X G, ZHOU X H, et al. FADD as a key molecular player in cancer progression[J]. Mol Med, 2022, 28(1): 132.
|
10 |
AWADIA S, SITTO M, RAM S, et al. The adapter protein FADD provides an alternate pathway for entry into the cell cycle by regulating APC/C-Cdh1 E3 ubiquitin ligase activity[J]. J Biol Chem, 2023, 299(6): 104786.
|
11 |
PATTJE W J, MELCHERS L J, SLAGTER-MENKEMA L, et al. FADD expression is associated with regional and distant metastasis in squamous cell carcinoma of the head and neck[J]. Histopathology, 2013, 63(2): 263-270.
|
12 |
WEI S Y, CHEN Z G, LING X Y, et al. Comprehensive analysis illustrating the role of PANoptosis-related genes in lung cancer based on bioinformatic algorithms and experiments[J]. Front Pharmacol, 2023, 14: 1115221.
|
13 |
MARÍN-RUBIO J L, PÉREZ-GÓMEZ E, FERNÁNDEZ-PIQUERAS J, et al. S194-P-FADD as a marker of aggressiveness and poor prognosis in human T-cell lymphoblastic lymphoma[J]. Carcinogenesis, 2019, 40(10): 1260-1268.
|
14 |
ZHANG R, LIU Y T, HAMMACHE K, et al. The role of FADD in pancreatic cancer cell proliferation and drug resistance[J]. Oncol Lett, 2017, 13(3): 1899-1904.
|
15 |
ZHENG Y, SHENG S, MA Y, et al. FADD amplification is associated with CD8+ T-cell exclusion and malignant progression in HNSCC[J]. Oral Dis, 2024, 30(8): 5007-5021.
|
16 |
HE M, HE Y Y, XU J, et al. Upregulated FADD is associated with poor prognosis, immune exhaustion, tumor malignancy, and immunotherapy resistance in patients with lung adenocarcinoma[J]. Front Oncol, 2023, 13: 1228889.
|
17 |
XUE T, YAN R, LI Z S, et al. Prognostic significance and immune correlates of FADD in penile squamous cell carcinoma[J]. Virchows Arch, 2023, 482(5): 869-878.
|
18 |
CIMINO Y, COSTES A, DAMOTTE D, et al. FADD protein release mirrors the development and aggressiveness of human non-small cell lung cancer[J]. Br J Cancer, 2012, 106(12): 1989-1996.
|
19 |
LIVINGSTON S, CARLTON C, SHARMA M, et al. Cux1 regulation of the cyclin kinase inhibitor p27kip1 in polycystic kidney disease is attenuated by HDAC inhibitors[J]. Gene X, 2019, 2: 100007.
|
20 |
RAMDZAN Z M, NEPVEU A. CUX1 a haploinsufficient tumour suppressor gene overexpressed in advanced cancers[J]. Nat Rev Cancer, 2014, 14(10): 673-682.
|
21 |
WELZ P S, WULLAERT A, VLANTIS K, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation[J]. Nature, 2011, 477(7364): 330-334.
|
22 |
ITOH N, YONEHARA S, ISHII A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis[J]. Cell, 1991, 66(2): 233-243.
|
23 |
TARTAGLIA L A, AYRES T M, WONG G H, et al. A novel domain within the 55 kd TNF receptor signals cell death[J]. Cell, 1993, 74(5): 845-853.
|
24 |
LOS M, VAN DE CRAEN M, PENNING L C, et al. Requirement of an ICE/CED-3 protease for fas/APO-1-mediated apoptosis[J]. Nature, 1995, 375(6526): 81-83.
|
25 |
STANIEK J, KALINA T, ANDRIEUX G, et al. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells[J]. Sci Immunol, 2024, 9(91): eadj5948.
|
26 |
LIU Y B, FAN C X, ZHANG Y F, et al. RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice[J]. Cell Death Differ, 2017, 24(8): 1459-1469.
|
27 |
CHEN G A, BHOJANI M S, HEAFORD A C, et al. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas[J]. Proc Natl Acad Sci USA, 2005, 102(35): 12507-12512.
|
28 |
GONZÁLEZ-MOLES M Á, AYÉN Á, GONZÁLEZ-RUIZ I, et al. Prognostic and clinicopathological significance of FADD upregulation in head and neck squamous cell carcinoma: a systematic review and meta-analysis[J]. Cancers, 2020, 12(9): 2393.
|
29 |
EYTAN D F, SNOW G E, CARLSON S, et al. SMAC mimetic birinapant plus radiation eradicates human head and neck cancers with genomic amplifications of cell death genes FADD and BIRC2[J]. Cancer Res, 2016, 76(18): 5442-5454.
|
30 |
CHIEN H T, CHENG S D, CHUANG W Y, et al. Clinical Implications of FADD Gene Amplification and Protein Overexpression in Taiwanese Oral Cavity Squamous Cell Carcinomas[J]. PLOS One, 2016, 11(10): e0164870.
|
31 |
SUPPER E, RUDAT S, IYER V, et al. Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia[J]. Nat Commun, 2021, 12(1): 2482.
|
32 |
LIU N, SUN Q L, WAN L, et al. CUX1, A controversial player in tumor development[J]. Front Oncol, 2020, 10: 738.
|