上海交通大学学报(医学版), 2023, 43(11): 1359-1365 doi: 10.3969/j.issn.1674-8115.2023.11.003

心脑血管慢病专题

房颤与认知障碍的因果关系:一项孟德尔随机化研究

高雄,, 张秋霞, 杨苗苗, 罗玮, 王月刚,, 修建成,

南方医科大学南方医院心血管内科,广州 510515

Causal relationship between atrial fibrillation and cognitive impairment: a Mendelian randomization study

GAO Xiong,, ZHANG Qiuxia, YANG Miaomiao, LUO Wei, WANG Yuegang,, XIU Jiancheng,

Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

通讯作者: 修建成,电子信箱:xiujch@163.com王月刚,电子信箱:wyg06@fimmu.com

编委: 徐敏

收稿日期: 2023-09-19   接受日期: 2023-11-03   网络出版日期: 2023-11-28

基金资助: 国家重点研发计划.  2018YFC1312803
国家自然科学基金.  81974266
广州市重点研发计划项目.  202206080014
南方医院院长基金.  2019Z002

Corresponding authors: XIU Jiancheng, E-mail:xiujch@163.comWANG Yuegang, E-mail:wyg06@fimmu.com.

Received: 2023-09-19   Accepted: 2023-11-03   Online: 2023-11-28

作者简介 About authors

高 雄(1992—),男,主治医师,硕士;电子信箱:18779560759@163.com。 E-mail:18779560759@163.com

摘要

目的·探讨心房颤动(房颤)与认知障碍之间的因果关系。方法·采用两样本孟德尔随机化(Mendelian randomization,MR)分析方法,利用房颤的大规模全基因组关联研究(genome-wide association study,GWAS)汇总数据集,提取与房颤强相关的单核苷酸多态性(single nucleotide polymorphism,SNP)作为工具变量。基于公开的认知功能障碍的GWAS数据,分别提取SNPs与阿尔茨海默病性痴呆、帕金森病痴呆、血管性痴呆、路易体痴呆、额颞叶痴呆、未定义的痴呆、总体认知功能评估等的关联程度。采用逆方差加权法(inverse variance weighted,IVW)进行主要分析,Cochran′s Q检验、MR-Egger回归、留一法(leave-one-out)进行敏感性分析。为了验证结果的稳健性,使用不同GWAS数据进行重复分析及荟萃分析。结果·初次分析从一项涉及多达1 030 836名个体的全基因组关联研究荟萃分析中提取了101个SNPs作为工具变量,IVW结果未发现房颤与认知障碍的因果联系[痴呆:OR=1.032(95%CI 0.973~1.094),P=0.290;帕金森病痴呆:OR=1.004(95%CI 0.780~1.291),P=0.977;血管性痴呆:OR=1.123(95%CI 0.969~1.301),P=0.125;未定义的痴呆:OR=1.013(95%CI 0.910~1.129),P=0.807]。重复分析从FinnGen网站的房颤GWAS数据提取了27个SNPs作为工具变量,IVW结果与初次分析一致[认知功能:OR=0.999(95%CI 0.982~1.016),P=0.874;阿尔茨海默病性痴呆:OR=0.977(95%CI 0.943~1.012),P=0.193;路易体痴呆:OR=1.014(95%CI 0.898~1.145),P=0.826;额颞叶痴呆:OR=0.996(95%CI 0.745~1.333),P=0.980]。2次孟德尔随机化分析及荟萃分析均表明遗传预测的房颤与不同类型痴呆及总体认知功能评估均无相关证据。MR-Egger回归提示不存在水平多效性,留一法逐个剔除SNP后发现结果稳定。结论·未发现房颤与认知障碍之间的因果关系证据。在观察性研究中观察到的关联可部分归因于共同的生物学或共患病等混杂因素。

关键词: 心房颤动 ; 认知功能障碍 ; 因果关系 ; 遗传 ; 孟德尔随机化研究

Abstract

Objective ·To investigate the causal relationship between atrial fibrillation (AF) and cognitive impairment. Methods ·A two-sample Mendelian randomization (TSMR) analysis was used to assess the potential causality of AF on cognitive dysfunction. Single nucleotide polymorphisms (SNPs) strongly associated with AF were extracted as instrumental variables by using a dataset of a large-scale genome-wide association study (GWAS) on AF. The associations of SNPs with Alzheimer′s disease dementia, Parkinson′s disease dementia, vascular dementia, Lewy body dementia, frontotemporal dementia, undefined dementia, and overall cognitive function assessment were extracted separately from publicly available GWAS data on cognitive dysfunction. The inverse variance-weighted (IVW) method was used for the main analysis, and sensitivity analyses were conducted by using Cochran′s Q test, MR-Egger regression, and leave-one-out method. To verify the robustness of the results, replicate analyses and meta-analyses were performed by using different GWAS data. Results ·In the initial analysis, 101 SNPs were extracted as instrumental variables from a meta-analysis of a genome-wide association study involving up to 1 030 836 individuals. The IVW analysis showed no evidence for causal associations between AF and dementia [dementia (OR=1.032; 95%CI 0.973‒1.094; P=0.290), Parkinson′s disease dementia (OR=1.004; 95%CI 0.780‒1.291; P=0.977), vascular dementia (OR=1.123; 95%CI 0.969‒1.301; P=0.125), or unspecified dementia (OR=1.013; 95%CI 0.910‒1.129; P=0.807)]. In the replication analysis, 27 SNPs were extracted as instrumental variables from the FinnGen AF GWAS data, and the IVW analysis were consistent with the initial analysis [cognitive function (OR=0.999; 95%CI 0.982‒1.016; P=0.874), Alzheimer′s disease dementia (OR=0.977; 95%CI 0.943‒1.012; P=0.193), Lewy body dementia (OR=1.014; 95%CI 0.898‒1.145; P=0.826), or frontotemporal dementia (OR=0.996; 95%CI 0.745‒1.333; P=0.980)]. Both Mendelian randomization analyses and meta-analyses showed no evidence of an association between genetically predicted AF and different types of dementia or overall cognitive function assessment. MR-Egger regression suggested no horizontal pleiotropy and leave-one-out analysis showed stable results after individually removing each SNP. Conclusion ·No evidence of a causal relationship between AF and cognitive impairment was found. The associations observed in observational studies can be partially attributed to confounding factors such as shared biology or co-morbidities.

Keywords: atrial fibrillation ; cognitive dysfunction ; causality ; genetics ; Mendelian randomization study

PDF (2014KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高雄, 张秋霞, 杨苗苗, 罗玮, 王月刚, 修建成. 房颤与认知障碍的因果关系:一项孟德尔随机化研究. 上海交通大学学报(医学版)[J], 2023, 43(11): 1359-1365 doi:10.3969/j.issn.1674-8115.2023.11.003

GAO Xiong, ZHANG Qiuxia, YANG Miaomiao, LUO Wei, WANG Yuegang, XIU Jiancheng. Causal relationship between atrial fibrillation and cognitive impairment: a Mendelian randomization study. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(11): 1359-1365 doi:10.3969/j.issn.1674-8115.2023.11.003

心房颤动(atrial fibrillation,AF;房颤)是最常见的持续性心律失常,人类较高的致病率和致死率与房颤有关。目前,全球范围内成人房颤的患病率为2%~4%,随着人口老龄化的加速,预计房颤总人群将增加2.3倍1-2

目前房颤对大脑影响的主要关注点为血栓栓塞引起的脑卒中,对可能通过多种途径造成大脑功能下降(即认知障碍)的关注较少3,而认知障碍却是老年人丧失日常生活能力、社会交际能力以及残疾的重要原因4

近年来,房颤与认知障碍相关性的研究逐渐得到重视。Rotterdam研究5表明房颤患者的认知障碍是非房颤患者的约2倍。多项大型纵向研究6-8表明,房颤与认知功能下降或痴呆风险的增加密切相关。在观察性研究中发现,房颤导致的认知障碍需要得到进一步研究。近年来,孟德尔随机化(Mendelian randomization,MR)方法提供了有力的研究策略:使用在全基因组关联研究中确定与暴露密切相关的遗传变异——单核苷酸多态性(single nucleotide polymorphism,SNP)作为工具变量,可以帮助克服观察性研究(特别是残留混杂因素和反向因果关系)的局限性,从而在暴露和结局风险之间做出证据更强的因果推断。

本研究通过两样本孟德尔随机化方法(two-sample Mendelian randomization,TSMR)来评估房颤与认知障碍的因果关系,以期为预防和治疗房颤相关的认知障碍提供科学依据。

1 资料与方法

1.1 研究设计

TSMR设计原理见图1,其核心思想是使用与暴露因素强相关的遗传变异作为工具变量(instrumental variable,Ⅳ),评价暴露因素与结局之间的因果联系。由于配子形成时遵循“亲代等位基因随机分配给子代”的孟德尔遗传规律,使得基因表型的遗传效应不会受到环境因素、社会经济因素、行为因素等传统混杂因素的影响。此外,遗传变异位点在个体出生后保持不变,并且先于后天疾病的发生,避免了反向因果关联等偏倚9-10。因此,MR能够有效避免传统观察性研究中存在的混杂偏倚和反向因果问题。

图1

图1   孟德尔随机化研究设计

Note: Assumption 1—Genetic variants were robustly associated with exposure. Assumption 2—Genetic variants were not associated with confounders. Assumption 3—Genetic variants affected the outcomes only through the exposure of interest. SNPs—single nucleotide polymorphisms. LD—linkage disequilibrium. WR—Wald ratio; WM—weighted median.

Fig 1   Overview of the current Mendelian randomization (MR) study


进行MR分析时,工具变量的选择需满足3个核心假设:① 工具变量必须与暴露因素存在强关联(关联性假设)。② 工具变量必须独立于结局的其他混杂因素(独立性假设)。③ 工具变量只能通过影响暴露因素影响结局发生,而不能通过其他途径对结局产生作用(排他性假设)11

1.2 数据来源

表1表2展示了全基因组关联研究(genome-wide association study,GWAS)数据来源详细信息。初次分析中房颤相关的遗传变异来自一项最近发表的研究12。这项研究是一项包含60 620例房颤患者和970 216例非房颤对照的6个研究队列组成的群体,98.6%是欧洲血统,检测了34 740 186个基因变异与房颤之间的关联。认知障碍的GWAS数据来自一项芬兰人群的研究。重复分析中房颤的遗传关联数据来自芬兰联盟,包含22 068例患者和116 926名对照。认知障碍的遗传关联数据来自4项认知障碍相关的全基因组关联研究13-16。有关芬兰联盟参与者、基因平台和统计分析方案的详细信息,可访问FinnGen网站(https://www.finngen.fi/en/)。

表1   孟德尔分析中暴露因素的GWAS信息

Tab 1  Exposure information of GWAS in the TSMR study

AnalysisExposureIDSample size/nRaceYearPMID
First analysisAtrial fibrillationebi-a-GCST0064141 030 836European201830061737
Duplicate analysisAtrial fibrillationfinn-b-I9138 994European2021NA

Note: PMID—PubMed unique identifier.

新窗口打开| 下载CSV


表2   孟德尔分析中结局因素的GWAS信息

Tab 2  Outcome information of GWAS in the TSMR study

AnalysisOutcomeIDSample size/nRaceYearPMID
First analysisDementiafinn-b-F5_DEMENTIA216 771European2021NA
First analysisDementia due to Parkinson′s diseasefinn-b-PD_DEMENTIA216 895European2021NA
First analysisVascular dementiafinn-b-F5_VASCDEM212 389European2021NA
First analysisUndefined dementiafinn-b-F5_Dementia_U215 511European2021NA
Duplicate analysisCognitive performanceebi-a-GCST006572257 841European201830038396
Duplicate analysisAlzheimer′s diseaseebi-a-GCST90012877472 868European202133589840
Duplicate analysisDementia with Lewy bodyebi-a-GCST900013906 618European202133589841
Duplicate analysisRontotemporal dementiaieu-b-433 024European201020154673

Note: PMID—PubMed unique identifier.

新窗口打开| 下载CSV


1.3 工具变量的选择

首先,选择与房颤显著相关的SNPs(P<5×10-8R2<0.001,遗传距离=10 000 kb),这满足第一个MR假设(关联性假设)。然后,通过在线网站PhenoScanner(http://www.phenoscanner.medschl.cam.ac.uk)进行检索,剔除与已知的混杂因素相关的SNPs(独立性假设和排他性假设)。最终得到的SNPs作为工具变量。为了避免由于使用弱工具而产生的偏倚,对每个SNP计算F统计量来测量统计强度,F值<10提示可能存在弱工具变量,F值越大表示工具变量是弱工具变量的可能性越小17

1.4 MR分析、荟萃分析及敏感性分析

所有MR分析均使用R软件(version 4.1.2 with packages)中的“TwoSample MR”“MRPRESSO”包进行,并使用“Meta”程序包进行荟萃分析。在这项研究中,逆方差加权法(inverse variance weighting,IVW)被作为主要方法来评价房颤与认知障碍的因果关系。使用Wald比值法(Wald ratio,WR)、加权中位数法(weighted median,WM)、MR-Egger回归分析进行补充。为了验证结果的稳健性,我们使用初次分析及重复分析结果进行荟萃分析以确定最终结果。使用Cochran′s Q统计量检验判断工具变量之间是否存在异质性18。采用MR-Egger回归评估潜在的多效性。此外,我们进行了留一法检验(leave-one-out)逐个剔除SNP来计算剩余SNPs的效应,用于检验单个SNP对结果稳定性的影响19

2 结果

2.1 工具变量的确定

初次分析中与房颤强相关的111个SNPs可解释约4.6%的变异12。本研究工具变量F统计量=543,表明工具变量的强度足够。通过PhenoScanner查询,我们发现5个SNP与高血压或冠心病相关,5个SNP与教育程度或神经质相关。排除这10个SNPs后,我们使用剩余的101个SNPs作为MR分析的工具。重复分析使用了与房颤强相关的30个SNPs,剔除了3个与高血压或冠心病相关的SNPs,剩余的27个SNPs作为重复分析时的工具变量。

2.2 TSMR分析及荟萃分析结果

初次分析使用101个SNPs作为工具变量,对不同类型认知障碍相关工具变量进行MR分析汇总后,随机效应模型的IVW方法显示,遗传预测的房颤与认知功能障碍的风险无关[痴呆:OR=1.032(95%CI 0.973~1.094),P=0.290;帕金森病痴呆:OR=1.004(95%CI 0.780~1.291),P=0.977;血管性痴呆:OR=1.123(95%CI 0.969~1.301),P=0.125;未定义的痴呆:OR=1.013(95%CI 0.910~1.129),P=0.807]。加权中位数法与MR-Egger回归法得到了与IVW法相似的结果,并且结果的方向与主要的IVW法一致。重复分析时使用FinnGen房颤GWAS数据观察到了类似的趋势。重复分析使用27个SNPs作为工具变量,得到与初次分析一致的结果[认知功能:OR=0.999(95%CI 0.982~1.016),P=0.874;阿尔茨海默病性痴呆:OR=0.977(95%CI 0.943~1.012),P=0.193;路易体痴呆:OR=1.014(95%CI 0.898~1.145),P=0.826;额颞叶痴呆:OR=0.996(95%CI 0.745~1.333),P=0.980]。之后我们对不同类型认知障碍的MR估计值进行了合并,在系数比值法估计的荟萃分析中,遗传预测的不同认知障碍类型的合并OR值为1.000(95%CI 0.983~1.014)。表3显示了2次MR分析的结果。图2展示了荟萃分析结果。

表3   房颤与不同类型认知障碍之间关联的MR分析

Tab 3  MR analysis of the association between atrial fibrillation and different types of cognitive impairment

AnalysisOutcomeIVW methodWM methodMR-Egger method
OR (95%CI)P valueOR (95%CI)P valueOR (95%CI)P value
First analysisDementia1.032 (0.973‒1.094)0.2901.020 (0.920‒1.131)0.7031.077 (0.962‒1.206)0.203
First analysisDementia due to Parkinson′s disease1.004 (0.780‒1.291)0.9770.795 (0.508‒1.245)0.3160.982 (0.603‒1.597)0.941
First analysisVascular dementia1.123 (0.969‒1.301)0.1251.180 (0.898‒1.550)0.2341.260 (0.947‒1.676)0.116
First analysisUndefined dementia1.013 (0.910‒1.129)0.8071.053 (0.862‒1.285)0.6151.170 (0.951‒1.441)0.142
Duplicate analysisCognitive performance0.999 (0.982‒1.016)0.8740.989 (0.975‒1.004)0.1680.983 (0.946‒1.022)0.405
Duplicate analysisAlzheimer′s disease0.977 (0.943‒1.012)0.1930.976 (0.930‒1.024)0.3240.994 (0.915‒1.079)0.885
Duplicate analysisDementia with Lewy body1.014 (0.898‒1.145)0.8261.106 (0.932‒1.311)0.2481.253 (0.953‒1.647)0.120
Duplicate analysisRontotemporal dementia0.996 (0.745‒1.333)0.9800.966 (0.666‒1.399)0.8530.874 (0.480‒1.590)0.672

Note: IVW—Inverse variance weighting; WM—weighted median.

新窗口打开| 下载CSV


图2

图2   遗传预测的房颤对不同认知障碍的荟萃分析

NoteSE—standard error; OR—odds ratio; CI—confidence interval.

Fig 2   Meta-analysis of genetically predicted atrial fibrillation on different cognitive impairments


2.3 敏感性分析结果

在房颤与认知障碍的MR分析结果中,仅在总体认知评估人群间存在异质性(P<0.05),其余不同类型痴呆的Cochran′s Q统计量均未发现显著的异质性,所有类型认知障碍中MR-Egger回归分析均未发现存在显著水平多效性的证据(表4)。在逐个剔除检验中,依次剔除单个SNP后得到的估计值没有明显变化,这表明没有单个SNP对总体估计有过大的影响。

表4   房颤与不同类型认知障碍之间关联的敏感性分析

Tab 4  Sensitivity analysis of the association between atrial fibrillation and different types of cognitive impairment

AnalysisOutcomeHeterogeneityPleiotropy
IVW methodMR-Egger methodP value
Cochran′s QP valueCochran′s QP value
First analysisDementia109.8810.194109.0540.1900.393
First analysisDementia due to Parkinson′s disease83.7170.84883.7060.8300.917
First analysisVascular dementia105.6980.280104.7760.2770.358
First analysisUndefined dementia94.7390.57492.2310.6180.117
Duplicate analysisCognitive performance81.5180.00079.0540.0000.396
Duplicate analysisAlzheimer′s disease29.0200.18028.7450.1520.651
Duplicate analysisDementia with Lewy body15.6790.86912.8090.9380.104
Duplicate analysisRontotemporal dementia4.7550.7834.5120.7190.637

新窗口打开| 下载CSV


3 讨论

本研究运用孟德尔随机化方法系统性评价房颤与认知障碍之间因果关系的研究。2次分析使用不同来源、多项国际队列的房颤大规模全基因组关联研究数据集,结果显示:无论是对于不同类型的痴呆还是总体认知功能评估,房颤与认知障碍均未发现因果联系的证据。

虽然既往大型队列研究Rotterdam研究5和Intermountain Health Collaborative研究6等报道了房颤与认知障碍显著相关,但也有研究20-22未发现房颤与认知障碍的关联。其次,房颤与认知障碍并存的原因可能只是反映了潜在的系统性血管疾病的表现,两者有共同危险因素且存在共病情况,包括:年龄23、吸烟24、高血压25、糖尿病25、炎症26-27、慢性肾脏疾病28和睡眠呼吸暂停29。另外,既往研究没有单独分析不同认知障碍的亚型,无法避免不同研究特征中的混杂影响。

与传统的观察性研究相比,我们通过孟德尔研究分析有效规避潜在的混杂因素及反向因果的影响。目前孟德尔研究已逐渐应用在饮食因素30、生活行为方式31与多种疾病32之间的因果关系研究,成为基因时代流行病学研究的新热点。本研究结局覆盖了不同类型痴呆及总体认知功能评估,且不同数据来源的效果评价都指向相同的结果,荟萃分析进一步加强了估计值的效应;本文还进行了敏感性分析,结果趋势未发生改变,从而增加了本研究的可靠性。

我们的研究也存在一定的局限性。首先,很难完全避免潜在水平多效性与异质性的影响,这可能导致有偏倚的因果效应估计18。然而这种可能性较小,因为纳入人群大多数人都是欧洲血统,同时在MR-Egger回归没有观察到多效性效应。其次,房颤可能只有在中老年开始时才会增加认知障碍的风险,并且房颤类型及房颤持续的时间也可能造成潜在痴呆的神经病理逐渐发展。而我们的研究中GWAS数据为汇总结果,由于缺乏详细的临床信息,不能进行亚组分析,因而不能确定其具体的因果联系。最后,对认知障碍进行系统筛查的工具多种多样,从综合神经心理测试到单一筛查工具,这可能导致诊断不足或过度诊断。

我们的两样本孟德尔随机化分析结果没有提供足够的证据来反映房颤与认知障碍的因果关系。在观察性研究中观察到的关联可部分归因于共同的生物学或共患病等混杂因素。

作者贡献声明

高雄负责研究的构思、设计、文献检索、论文撰写;高雄、杨苗苗负责数据提取与统计分析;张秋霞、罗玮负责文献质量评价、论文修订;修建成、王月刚负责论文的最终审核。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

GAO Xiong was responsible for the conception, design, literature retrieval and paper writing of the study; GAO Xiong and YANG Miaomiao were responsible for data extraction and statistical analysis; ZHANG Qiuxia and LUO Wei were responsible for literature quality evaluation and paper revision; XIU Jiancheng and WANG Yuegang were responsible for the final review of the paper. All the authors have read and approved the submission of the final manuscript.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

HINDRICKS G, POTPARA T, DAGRES N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC[J]. Eur Heart J, 2021, 42(5): 373-498.

[本文引用: 1]

SHI S B, TANG Y H, ZHAO Q Y, et al. Prevalence and risk of atrial fibrillation in China: a national cross-sectional epidemiological study[J]. Lancet Reg Health West Pac, 2022, 23: 100439.

[本文引用: 1]

BALL J, CARRINGTON M J, STEWART S, et al. Mild cognitive impairment in high-risk patients with chronic atrial fibrillation: a forgotten component of clinical management?[J]. Heart, 2013, 99(8): 542-547.

[本文引用: 1]

LIVINGSTON G, SOMMERLAD A, ORGETA V, et al. Dementia prevention, intervention, and care[J]. Lancet, 2017, 390(10113): 2673-2734.

[本文引用: 1]

de BRUIJN R F A G, HEERINGA J, WOLTERS F J, et al. Association between atrial fibrillation and dementia in the general population[J]. JAMA Neurol, 2015, 72(11): 1288-1294.

[本文引用: 2]

JARED T, BUNCH, MD, et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer's dementia[J]. Heart Rhythm, 2010, 7(4): 433-437.

[本文引用: 2]

SINGH-MANOUX A, FAYOSSE A, SABIA S, et al. Atrial fibrillation as a risk factor for cognitive decline and dementia[J]. Eur Heart J, 2017, 38(34): 2612-2618.

KALANTARIAN S, STERN T A, MANSOUR M, et al. Cognitive impairment associated with atrial fibrillation: a meta-analysis[J]. Ann Intern Med, 2013, 158(5 Pt 1): 338-346.

[本文引用: 1]

EMDIN C A, KHERA A V, KATHIRESAN S. Mendelian randomization[J]. JAMA, 2017, 318(19): 1925.

[本文引用: 1]

王玉琢, 沈洪兵. 孟德尔随机化研究应用于因果推断的影响因素及其结果解读面临的挑战[J]. 中华流行病学杂志, 2020, 41(8): 1231-1236.

[本文引用: 1]

WANG Y Z, SHEN H B. Challenges and factors that influencing causal inference and interpretation, based on Mendelian randomization studies[J]. Chinese Journal of Epidemiology, 2020, 41(8): 1231-1236.

[本文引用: 1]

BOEF A G C, DEKKERS O M, LE CESSIE S. Mendelian randomization studies: a review of the approaches used and the quality of reporting[J]. Int J Epidemiol, 2015, 44(2): 496-511.

[本文引用: 1]

NIELSEN J B, THOROLFSDOTTIR R B, FRITSCHE L G, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology[J]. Nat Genet, 2018, 50(9): 1234-1239.

[本文引用: 2]

LEE J J, WEDOW R, OKBAY A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals[J]. Nat Genet, 2018, 50(8): 1112-1121.

[本文引用: 1]

SCHWARTZENTRUBER J, COOPER S, LIU J Z, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer′s disease risk genes[J]. Nat Genet, 2021, 53(3): 392-402.

CHIA R, SABIR M S, BANDRES-CIGA S, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture[J]. Nat Genet, 2021, 53(3): 294-303.

van DEERLIN V M, SLEIMAN P M A, MARTINEZ-LAGE M, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions[J]. Nat Genet, 2010, 42(3): 234-239.

[本文引用: 1]

BURGESS S, BUTTERWORTH A, THOMPSON S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665.

[本文引用: 1]

BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525.

[本文引用: 2]

BURGESS S, DAVEY SMITH G, DAVIES N M, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res, 2023, 4: 186.

[本文引用: 1]

ALESSANDRA, MARENGONI,. Atrial fibrillation, stroke and dementia in the very old: a population-based study[J]. Neurobiol Aging, 2011, 32(7): 1336-1337.

[本文引用: 1]

HARING B, LENG X Y, ROBINSON J, et al. Cardiovascular disease and cognitive decline in postmenopausal women: results from the Women′s Health Initiative Memory Study[J]. J Am Heart Assoc, 2013, 2(6): e000369.

PETERS R, POULTER R, BECKETT N, et al. Cardiovascular and biochemical risk factors for incident dementia in the Hypertension in the Very Elderly Trial[J]. J Hypertens, 2009, 27(10): 2055-2062.

[本文引用: 1]

ODUTAYO A, WONG C X, HSIAO A J, et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis[J]. BMJ, 2016, 354: i4482.

[本文引用: 1]

NISHTALA A, PIERS R J, HIMALI J J, et al. Atrial fibrillation and cognitive decline in the Framingham Heart Study[J]. Heart Rhythm, 2018, 15(2): 166-172.

[本文引用: 1]

DIENER H C, HART R G, KOUDSTAAL P J, et al. Atrial fibrillation and cognitive function: JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 73(5): 612-619.

[本文引用: 2]

HU Y F, CHEN Y J, LIN Y J, et al. Inflammation and the pathogenesis of atrial fibrillation[J]. Nat Rev Cardiol, 2015, 12(4): 230-243.

[本文引用: 1]

ENCIU A M, POPESCU B O. Is there a causal link between inflammation and dementia?[J]. Biomed Res Int, 2013, 2013: 316495.

[本文引用: 1]

BANERJEE G, CHAN E, AMBLER G, et al. Cognitive impairment before atrial fibrillation-related ischemic events: neuroimaging and prognostic associations[J]. J Am Heart Assoc, 2020, 9(1): e014537.

[本文引用: 1]

de TORRE J C. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia[J]. Cardiovasc Psychiatry Neurol, 2012, 2012: 367516.

[本文引用: 1]

LARSSON S C. Mendelian randomization as a tool for causal inference in human nutrition and metabolism[J]. Curr Opin Lipidol, 2021, 32(1): 1-8.

[本文引用: 1]

van OORT S, BEULENS J W J, van BALLEGOOIJEN A J, et al. Association of cardiovascular risk factors and lifestyle behaviors with hypertension: a Mendelian randomization study[J]. Hypertension, 2020, 76(6): 1971-1979.

[本文引用: 1]

PAN Y S, WANG Y L, WANG Y J. Investigation of causal effect of atrial fibrillation on alzheimer disease: a Mendelian randomization study[J]. J Am Heart Assoc, 2020, 9(2): e014889.

[本文引用: 1]

/