上海交通大学学报(医学版), 2025, 45(6): 693-704 doi: 10.3969/j.issn.1674-8115.2025.06.004

论著 · 基础研究

磷脂酰乙醇胺引起内质网应激促进巨噬细胞衰老及肝损伤

韩龙传1,2, 李悦1,2, 邹智慧1,2, 罗静1,2,3, 李若伊1, 张颖婷1,2,4, 唐欣欣1,2, 田丽红1,2,3, 陆宇恒1,2, 黄莺1, 贺明,1,2, 付寅坤,1,2

1.上海交通大学基础医学院病理生理学系,细胞分化与凋亡教育部重点实验室,上海市细胞稳态调控与疾病前沿科学研究基地,上海 200025

2.上海交通大学医学院附属第九人民医院细胞命运与疾病转化医学研究院,上海 200025

3.昆明医科大学基础医学院病理学与病理生理学系,昆明 650500

4.上海交通大学医学院附属瑞金医院中心实验室,上海 200025

Phosphatidylethanolamine promotes macrophage senescence and liver injury by activating endoplasmic reticulum stress

HAN Longchuan1,2, LI Yue1,2, ZOU Zhihui1,2, LUO Jing1,2,3, LI Ruoyi1, ZHANG Yingting1,2,4, TANG Xinxin1,2, TIAN Lihong1,2,3, LU Yuheng1,2, HUANG Ying1, HE Ming,1,2, FU Yinkun,1,2

1.Frontier Research Center for Cell Homeostasis and Disease Control; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; Department of Pathophysiology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

2.Institute for Translational Medicine on Cell Fate and Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

3.Department of Pathology and Pathophysiology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China

4.Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

通讯作者: 付寅坤,实验师,博士;电子信箱:yinkunfu@shsmu.edu.cn贺 明,教授,博士;电子信箱:heming@shsmu.edu.cn

编委: 包玲

收稿日期: 2025-01-24   接受日期: 2025-02-28   网络出版日期: 2025-06-28

基金资助: 国家自然科学基金.  32371244.  82270244.  82200654.  92057118
东方英才计划
上海交通大学医学院高水平地方高校创新团队.  SHSMU-ZDCX20212000
上海交通大学医学院基础医学院青年人才支持计划.  2024RCZC-C-03

Corresponding authors: FU Yinkun, E-mail:yinkunfu@shsmu.edu.cnHE Ming, E-mail:heming@shsmu.edu.cn.

Received: 2025-01-24   Accepted: 2025-02-28   Online: 2025-06-28

作者简介 About authors

韩龙传(1999—),男,硕士生;电子信箱:lc.han@sjtu.edu.cn。 。

摘要

目的·探讨磷脂酰乙醇胺(phosphatidylethanolamine,PE)对巨噬细胞衰老及其衰老相关分泌表型的影响和分子机制,以及PE在肝损伤中的病理生理学意义。方法·利用阿霉素建立巨噬细胞衰老模型,并给予PE处理。通过腹腔联合注射PE和脂多糖构建小鼠肝损伤模型,观察PE对肝损伤的影响。采用衰老相关β-半乳糖苷酶(senescence-associated β- galactosidase,SA-β-gal)染色,结合实时荧光定量PCR、Western blotting等检测细胞周期抑制蛋白p21、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白介素-6(interleukin-6,IL-6)等衰老标志物及衰老相关分泌表型生物活性因子的表达水平。通过RNA测序结合基因本体论(Gene Ontology,GO)细胞组分富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析、基因集变异分析(Gene Set Variation Analysis,GSVA)和基因集富集分析(Gene Set Enrichment Analysis,GSEA)筛选PE促进巨噬细胞衰老的信号通路及分子机制。通过体内和体外实验检测内质网应激相关通路中肌醇需求酶1α(inositol requiring enzyme 1 α,IRE1α)、剪接型X盒结合蛋白1(spliced X box binding protein 1,XBP1s)、转录激活因子6(activating transcription factor 6,ATF6)、ATF4、C/EBP同源蛋白(C/EBP homologous protein,CHOP)的表达。结果·PE显著促进巨噬细胞衰老标志物SA-β-gal、p21、p16及衰老相关分泌表型生物活性因子的表达。RNA测序分析显示内质网应激参与PE促进衰老相关分泌表型表达的作用。进一步的实验表明,PE通过激活巨噬细胞内质网应激信号通路促进巨噬细胞衰老及衰老相关分泌表型表达。体内实验证实PE通过内质网应激加剧脂多糖诱导的小鼠肝损伤。结论·PE通过激活内质网应激信号通路,促进巨噬细胞衰老及衰老相关分泌表型生物活性因子分泌,进而加重脂多糖诱导的肝损伤。

关键词: 磷脂酰乙醇胺 ; 巨噬细胞 ; 衰老相关分泌表型 ; 肝损伤 ; 内质网应激

Abstract

Objective ·To investigate the effects and molecular mechanisms of phosphatidylethanolamine (PE) on macrophage senescence and its senescence-associated secretory phenotype (SASP), as well as its pathophysiological role in liver injury. Methods ·A macrophage senescence model was established using doxorubicin (DOX), followed by PE treatment. A mouse liver injury model was generated via intraperitoneal co-administration of PE and lipopolysaccharide (LPS) to investigate the effects of PE on liver injury. Senescence markers and SASP factors, including senescence-associated β-galactosidase (SA-β-gal), cell cycle inhibitor p21, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were evaluated using SA-β-gal staining, quantitative real-time PCR, and Western blotting. RNA sequencing (RNA-seq) was performed, followed by Gene Ontology (GO) cellular component enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Variation Analysis (GSVA), and Gene Set Enrichment Analysis (GSEA), to explore the molecular mechanisms and signaling pathways by which PE promotes macrophage senescence. The expression of endoplasmic reticulum (ER) stress-related proteins, including inositol-requiring enzyme 1 α (IRE1α), spliced X-box binding protein 1 (XBP1s), activating transcription factor 6 (ATF6), ATF4, and C/EBP homologous protein (CHOP), was analyzed through in vivo and in vitro experiments. Results ·PE significantly promoted the expression of senescence markers SA-β-gal, p21, p16 and SASP factors. RNA-seq analysis revealed that ER stress was involved in PE-induced promotion of SASP. Further experiments demonstrated that PE activated the ER stress signaling pathway, promoting macrophage senescence and the expression of SASP factors. In vivo experiments further confirmed that PE exacerbated LPS-induced liver injury in mice through ER stress. Conclusion ·PE promotes macrophage senescence and the expression of SASP factors by activating ER stress signaling pathway, thereby aggravating LPS-induced liver injury.

Keywords: phosphatidylethanolamine (PE) ; macrophage ; senescence-associated secretory phenotype (SASP) ; liver injury ; endoplasmic reticulum stress

PDF (7672KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩龙传, 李悦, 邹智慧, 罗静, 李若伊, 张颖婷, 唐欣欣, 田丽红, 陆宇恒, 黄莺, 贺明, 付寅坤. 磷脂酰乙醇胺引起内质网应激促进巨噬细胞衰老及肝损伤. 上海交通大学学报(医学版)[J], 2025, 45(6): 693-704 doi:10.3969/j.issn.1674-8115.2025.06.004

HAN Longchuan, LI Yue, ZOU Zhihui, LUO Jing, LI Ruoyi, ZHANG Yingting, TANG Xinxin, TIAN Lihong, LU Yuheng, HUANG Ying, HE Ming, FU Yinkun. Phosphatidylethanolamine promotes macrophage senescence and liver injury by activating endoplasmic reticulum stress. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(6): 693-704 doi:10.3969/j.issn.1674-8115.2025.06.004

细胞衰老是衰老的12个特征之一1,是由急性或慢性损伤引起的一种反应。其特征表现为细胞周期停滞和增殖能力丧失,对外界刺激的应答能力下降;这一过程是驱动衰老和年龄相关疾病的关键因素2。衰老的细胞不仅失去了正常的增殖能力,还可分泌一系列促炎因子,影响周围的细胞环境,进而参与多种衰老相关疾病的发生发展3。巨噬细胞是体内重要的免疫细胞,在先天性和适应性免疫反应中起到重要作用。巨噬细胞表达多种模式识别受体(pattern recognition receptor,PRR),如Toll样受体(Toll-like receptor,TLR),可感知外界病原体和内源性危险信号4。它是肝脏内除内皮细胞外最多的非实质细胞5。在脂多糖诱导的脓毒症中,巨噬细胞既能够清除病原、细胞碎片,发挥组织修复和免疫监视的重要作用,也可以启动炎症信号级联反应,分泌炎症因子,对包括肝脏在内的多个器官造成损伤。随着机体衰老,免疫细胞表现出衰老特征,其内在表现为清除衰老或受损细胞效率降低,外在表现为机体免疫力下降。巨噬细胞功能失调是免疫衰老的一个关键因素,通常表现为增殖停止、吞噬功能减弱、炎症因子分泌增加和抗原提呈能力下降6-7,但巨噬细胞衰老的调控机制尚不清楚。

衰老相关分泌表型是衰老细胞表现出分泌生物活性因子的特征,这些因子包括细胞因子、趋化因子、酶、蛋白质降解产物等,能够改变局部微环境并影响周围细胞的功能8。衰老相关分泌表型具有多方面的生物学功能,既可能对组织修复和免疫防御产生积极作用,也可能导致慢性低度炎症、组织损伤以及衰老相关疾病的发生9。衰老相关分泌表型的调控发生在多个层面,包括染色质调控和转录。有研究10表明,赖氨酸去甲基化酶4(lysine-specific demethylase 4,KDM4)介导染色质组蛋白H3第9位赖氨酸(histone H3 lysine 9,H3K9)、H3K36去甲基化,促进衰老相关分泌表型生成。核转录因子κB(nuclear transcription factor-κB,NF-κB)也是衰老相关分泌表型的主要调节因子。此外,细胞表面蛋白,如CD36和CD40L,对NF-κB及其下游衰老相关分泌表型的激活也是必不可少的11。目前衰老相关分泌表型中被研究最多和最深入的是可溶性信号因子,主要包括白介素-6(interleukin-6,IL-6)、IL-1β、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、C-X-C基序趋化因子配体1(C-X-C motif chemokine ligand 1,CXCL1)和金属基质蛋白酶13(matrix metalloproteinase 13,MMP13)等,它们通过与细胞表面受体结合激活细胞内信号转导,影响细胞生长、分化和功能,其中部分已有报道能被多种代谢产物诱导表达。有研究指出,胆固醇12、脱氧胆酸13能够促进细胞衰老相关分泌表型的IL-1β和IL-6表达。但脂质分子对衰老相关分泌表型的调控及机制目前还不清楚。

脂质不仅维持能量代谢、信号转导和细胞稳态,还对免疫细胞的活化和功能至关重要。免疫细胞衰老过程中脂质代谢的紊乱会阻碍免疫细胞参与免疫应答,加剧免疫功能的下降,进一步促进年龄相关疾病的发生14。这提示脂质代谢在免疫衰老中具有关键调节作用。磷脂酰乙醇胺(phosphatidylethanolamine,PE)是组成细胞膜的重要磷脂类分子,广泛存在于各种生物体内15。近年来的研究强调了PE在细胞增殖分化、免疫调节、神经保护、抗炎等方面的重要作用16,但PE作为关键的脂质分子在免疫衰老特别是巨噬细胞衰老方面的研究较少。本研究旨在探讨PE在巨噬细胞衰老和衰老相关分泌表型形成中的作用和分子机制,以及PE在脂多糖诱导的肝损伤中的病理生理学意义,从而揭示PE作为免疫衰老、炎症反应及组织修复潜在靶点的可能性,为抗衰老治疗提供新的实验证据。

1 对象与方法

1.1 细胞和实验动物

小鼠单核巨噬细胞白血病细胞RAW264.7购自美国模式菌种收集中心(American Type Culture Collection,ATCC)。将细胞培养于含10%胎牛血清的DMEM培养基中。由于RAW264.7细胞容易发生自分化,传代培养过程中应避免机械刺激或胰酶处理,并严格控制细胞代数(5~20代);同时应监测细胞的形态变化,若发生明显分化,及时更换新批次细胞17-18

C57BL/6J品系小鼠购于上海灵畅生物科技有限公司,生产许可证号为SCXK(沪)2023-0003,使用许可证号为JUMC2023-173-A。在上海交通大学医学院实验动物科学部无特定病原体(specific pathogen-free,SPF)级别动物房中饲养。小鼠进食和饮水自由,每笼5只。动物房温度18~26 ℃,相对湿度40%~60%,昼夜交替时间各12 h。

1.2 主要试剂与仪器

DMEM培养基、10%胎牛血清(Gibco BRL,美国),磷酸盐缓冲液(phosphate buffered saline,PBS)(武汉赛维尔生物科技有限公司),阿霉素、PE(上海麦克林生化科技股份公司),细胞衰老β-半乳糖苷酶染色试剂盒(上海碧云天生物技术股份有限公司),TRIzol试剂、反转录试剂盒、SYBR qPCR Master Mix(南京诺唯赞生物科技股份有限公司),p21抗体、p16抗体(成都正能生物技术有限责任公司),磷酸化肌醇需求酶1α(phosphorylated inositol requiring enzyme 1 α,p-IRE1α)抗体(Abcam,英国),IRE1α抗体、转录激活因子6(activating transcription factor 6,ATF6)抗体、剪接型X盒结合蛋白1(spliced X box binding protein 1,XBP1s)抗体、激活转录因子4(activating transcription factor 4,ATF4)抗体(CST,美国),辣根过氧化物酶(HRP)标记的β-肌动蛋白(β-actin)抗体(GNI,日本),HRP标记的抗兔IgG二抗(Santa Cruz,美国),HRP标记的抗鼠IgG二抗(GNI,日本),XBP1抑制剂丰加霉素(Toyocamycin)(MCE,美国),脂多糖(Sigma,美国),抗β-gal抗体(Invitrogen,美国),天冬氨酸转氨酶(aspartate transaminase,AST)检测试剂盒(南京建成生物工程研究所)。

光学显微镜(NIKON,日本),恒温箱(Boekel Scientific,美国),酶标仪、NanoDrop微量分光光度计、实时荧光定量PCR仪(赛默飞,美国),电泳仪(Bio-Rad,美国),天能Tanon化学发光成像仪(深圳天深医疗科技有限公司)。

1.3 实验方法

1.3.1 细胞衰老模型构建

将RAW264.7细胞分为对照组(CON组)和衰老组(DOX组),衰老组细胞用0.5 μmol/L阿霉素处理24 h诱导构建细胞衰老模型,对照组使用等体积PBS处理。2组细胞均分别使用0、10、50、125 μmol/L PE处理24 h。PE于阿霉素前1 h加入。使用丰加霉素时,将20 nmol/L丰加霉素于PE前1 h加入19-21

1.3.2 小鼠肝损伤模型构建

将小鼠分为对照组(CTRL组)、PE组、脂多糖组(LPS组)和PE+LPS组。PE组与PE+LPS组小鼠每日腹腔注射PE 20 mg/kg,连续给药7 d后,予LPS组与PE+LPS组腹腔注射脂多糖40 mg/kg,12 h后将4组取材分析。

1.3.3 衰老相关β-半乳糖苷酶染色

RAW264.7细胞先用染色固定液固定,再按照试剂盒说明书配制并加入含有5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-gal)的染色混合液,行衰老相关β-半乳糖苷酶(senescence-associated β-galactosidase,SA-β-gal)染色,并放入37 ℃烘箱孵育过夜,于光学显微镜下观察。由于衰老的细胞β-半乳糖苷酶活性增强,可以催化底物X-gal生成蓝色产物,因此镜下可观察到衰老的RAW264.7细胞呈现蓝色。

1.3.4 RNA提取、反转录及实时荧光定量PCR实验

将小鼠肝组织和RAW264.7细胞用TRIzol裂解,按照使用说明书提取RNA,定量后利用反转录试剂盒将mRNA反转录成cDNA,使用SYBR qPCR Master Mix进行实时荧光定量PCR实验。针对待测目的基因设计PCR引物,引物由北京擎科生物科技股份有限公司合成,引物序列见表1。内参基因选择β-actin,采用2-ΔΔCT计算每个基因的相对表达量。

表1   实时荧光定量PCR的引物序列

Tab 1  Primer sequences for quantitative real-time PCR

GeneForward primer (5′→3′)Reverse primer (5′→3′)
p21CCTGGTGATGTCCGACCTGCCATGAGCGCATCGCAATC
p16CCAGGGCCGTGTGCATTACGTGAACGTTGCCCATCA
Tnf-αGCCACCACGCTCTTCTGTCTACGGGTCTGGGCCATAGAACTGAT
Il-6GTTGTGCAATGGCAATTCTGCTGGCTTTGTCTTTCTTGTTATCT
Il-1βGCAACTGTTCCTGAACTCAACTATCTTTTGGGGTCCGTCAACT
Cxcl1CTGCACCCAAACCGAAGTCCCAGGGCCGTGTGCAT
Mmp13CTTCTTCTTGTTGAGCTGGACTCCTGTGGAGGTCACTGTAGACT
Ire1αTCCTAACAACCTGCCCAAACAAGATACGGTGGTCGGTGTGT
Atf6GCAATACCTGTTCTTCCTCTGATCTAAACACCCACAAGCCACA
ChopCCACCACACCTGAAAGCAGAAAGGTGAAAGGCAGGGACTCA
β-actinGGCTGTATTCCCCTCCATCGCCAGTTGGTAACAATGCCATGT

Note:Chop—C/EBP homologous protein.

新窗口打开| 下载CSV


1.3.5 Western blotting检测

裂解小鼠肝脏蛋白和RAW264.7细胞蛋白,根据待测蛋白的相对分子质量利用相应的8%~12%十二烷基硫酸钠(SDS)聚丙烯酰胺凝胶进行电泳,转移至聚偏二氟乙烯(PVDF)膜,用5%脱脂牛奶室温封闭1 h,摇床4 ℃过夜孵育p21抗体(1∶1 000)、p16抗体(1∶1 000)、p-IRE1α抗体(1∶1 000)、IRE1α抗体(1∶1 000)、ATF6抗体(1∶1 000)、ATF4抗体(1∶1 000)、β-actin-HRP抗体(1∶5 000)。回收一抗,TBST缓冲液洗膜3次,每次5 min。HRP标记的二抗抗兔IgG(1∶5 000)或抗鼠IgG(1∶5 000)室温摇床孵育1 h,TBST缓冲液洗膜。ECL显影液化学发光,Tanon成像仪显影并保存。

1.3.6 RNA测序

RAW264.7细胞用阿霉素处理为DOX组,用50 μmol/L PE和阿霉素处理为PE+DOX组。实验方法同“1.3.1”部分。收取样本用TRIzol裂解,由杭州联川生物技术股份有限公司进行RNA测序及分析。

1.3.7 组织病理学观察

取小鼠肝脏组织,用4%多聚甲醛固定,由瑞雨生物公司进行石蜡包埋、切片,并行苏木精-伊红染色(hematoxylin and eosin staining,HE染色)、免疫组织化学染色(immunohistochemical staining,IHC染色)和TUNEL染色。

1.3.8 AST检测

取小鼠血液,利用AST试剂盒和酶标仪检测AST水平。

1.4 统计学方法

数据采用GraphPad Prism 9.0软件处理。正态分布的定量资料用x±s表示,采用Student's t检验进行2组间比较。P<0.05表示差异具有统计学意义。

2 结果

2.1 PE促进巨噬细胞衰老及衰老相关分泌表型表达

为探究PE对于巨噬细胞衰老的影响,本研究利用阿霉素处理RAW264.7细胞建立衰老巨噬细胞模型,同时在对照组和衰老组加入0、10、50、125 μmol/L PE,并进行SA-β-gal染色。结果显示,阿霉素促进了细胞衰老,10、50、125 μmol/L PE均可促进正常巨噬细胞SA-β-gal的表达,但在衰老组促SA-β-gal表达更显著(图1A)。通过实时荧光定量PCR检测发现,50、125 μmol/L PE处理的衰老巨噬细胞中衰老标志物p21p16 mRNA表达水平显著增加(图1B、C)。同时,Western blotting结果显示衰老标志物p21、p16蛋白表达也显著增加(图1D)。对衰老相关分泌表型主要活性因子的检测结果显示,与对照组相比,Il-1β在经50 μmol/L的PE处理的衰老组显著增加,且50、125 μmol/L的PE处理显著增加Tnf-αIl-6Cxcl1Mmp13 mRNA的表达(图1E~I)。以上结果表明,PE促进巨噬细胞衰老及衰老相关分泌表型表达。

图1

图1   PE促进巨噬细胞衰老及衰老相关分泌表型表达

Note: A. Representative images of SA-β-gal staining in RAW264.7 cells treated with different concentrations of PE (0, 10, 50 and 125 μmol·L-1) in the presence or absence of DOX (0.5 μmol·L-1), bar=50 μm. B/C. Quantitative real-time PCR analysis of expression of senescence markers p21 (B) and p16 (C) in RAW264.7 cells treated with different concentrations of PE (0, 10, 50 and 125 μmol·L-1) in the presence of DOX. D. Western blotting analysis of senescence markers. E‒I. Quantitative real-time PCR analysis of expression of senescence-associated secretory phenotype (SASP) factors Tnf-α (E), Il-6 (F), Il-1β (G), Cxcl1 (H) and Mmp13 (I). P<0.001, P=0.001, P=0.021, P=0.005, P=0.027, P=0.023, P=0.031, P=0.019, P=0.009, P=0.045, P=0.008, P=0.002. DOX—doxorubicin.

Fig 1   PE promotes cellular senescence and the expression of SASP in macrophages


2.2 PE激活内质网应激信号通路

为探究PE促进巨噬细胞衰老的机制,选取50 μmol/L PE联合阿霉素处理的RAW264.7细胞,以及单独使用阿霉素处理的细胞,进行转录组测序。基因本体论(Gene Ontology,GO)细胞组分富集分析显示,差异表达基因的亚细胞定位主要集中在线粒体、内质网和细胞骨架等细胞器(图2A)。京都基因与基因组(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析进一步表明,经PE处理的衰老巨噬细胞氧化磷酸化和内质网应激相关通路内质网蛋白加工等多条通路显著富集(图2B)。基因集变异分析(Gene Set Variation Analysis,GSVA)热图显示,PE+DOX组在细胞衰老、内质网蛋白加工、PI3K-Akt信号通路、炎症相关通路(如Toll样受体信号通路和NF-κB信号通路)相关基因表达显著增加(图2C)。基因集富集分析(Gene Set Enrichment Analysis,GSEA)显示,PE+DOX组内质网应激相关基因集呈现富集趋势,包括内质网未折叠蛋白反应、内质网应激反应,表明PE处理可能通过增强内质网应激反应驱动巨噬细胞的基因表达变化(图2D)。

图2

图2   PE处理的衰老巨噬细胞RNA测序功能富集分析

Note: The DOX group was treated with 0.5 μmol·L-1 DOX, while the PE group was treated with 50 μmol·L-1 PE in combination with DOX. A. GO enrichment analysis of cellular component categories, presented as an enrichment factor plot [(PE+DOX) vs DOX]. B. KEGG pathway enrichment analysis displayed as an enrichment factor plot [(PE+DOX) vs DOX]. C. Heatmap of GSVA [(PE+DOX) vs DOX]. D. GSEA of endoplasmic reticulum unfolded protein response and response to endoplasmic reticulum stress [(PE+DOX) vs DOX].

Fig 2   Functional enrichment analysis of RNA sequencing data from senescent macrophages treated with PE


2.3 PE通过引起内质网应激促进巨噬细胞衰老及衰老相关分泌表型表达

为了验证PE是否影响内质网应激,本研究检测衰老巨噬细胞中内质网应激信号通路相关基因的表达。实时荧光定量PCR结果显示,与DOX组相比,PE促进了衰老细胞Ire1αAtf6-P(全长前体形式Atf6)、Chop mRNA表达(图3A~C)。Western blotting结果表明,PE上调了p-IRE1α、XBP1s、ATF4、ATF6-P蛋白表达。由于XBP1剪接形式XBP1s的变化最为显著,而剪切激活的ATF6(ATF6-N)变化不明显(图3D),推测XBP1信号通路介导了PE的功能。接下来,为了进一步验证PE是否通过XBP1调控细胞衰老及衰老相关分泌表型,本研究给予衰老细胞XBP1s抑制剂丰加霉素(20 nmol/L)1 h后,再给予PE处理24 h,并进行SA-β-gal染色,结果显示丰加霉素明显减少了PE诱导的SA-β-gal阳性细胞数量(图3E)。实时荧光定量PCR和Western blotting结果显示,丰加霉素显著抑制PE导致的衰老巨噬细胞中p21p16 mRNA和蛋白的表达(图3F~H),同时在PE处理的衰老巨噬细胞中,衰老相关分泌表型基因Tnf-αIl-6Il-1βCxcl1Mmp13的mRNA表达被丰加霉素显著抑制(图3I~M)。以上结果表明PE通过激活内质网应激信号通路中的关键分子XBP1s促进巨噬细胞衰老及衰老相关分泌表型表达。

图3

图3   PE通过引起内质网应激信号通路促进巨噬细胞衰老和衰老相关分泌表型表达

Note:A‒C. Quantitative real-time PCR analysis of Ire1α (A), Atf6 (B) and Chop (C) mRNA expression in RAW264.7 cells treated with DOX and PE (50 μmol·L-1). D. Western blotting analysis of endoplasmic reticulum stress-related proteins, including p-IRE1α, IRE1α, ATF6-P, ATF6-N, XBP1s and ATF4. E. SA-β-gal staining of RAW264.7 cells treated with Toyocamycin, DOX and PE. F/G. Quantitative real-time PCR analysis of senescence marker mRNA expression, including p21 (F) and p16 (G). H. Western blotting analysis of proteins including p21 and p16. I‒M. Quantitative real-time PCR analysis of SASP mRNA expression, including Tnf-α (I), Il-6 (J), Il-1β (K), Cxcl1 (L) and Mmp13 (M). P=0.033, P=0.009, P<0.001, P=0.014, P=0.012, P=0.005, P=0.003, P=0.008, P=0.010.

Fig 3   PE promotes macrophage senescence and SASP through activating endoplasmic reticulum stress signaling pathway


2.4 PE加剧脂多糖诱导的肝损伤

为探究PE在脂多糖诱导肝损伤中的病理生理学意义,本研究利用PE和脂多糖联合给药,观察小鼠肝损伤等情况。肝脏大体图显示PE组、LPS组肝脏增大,外观颜色略深,提示炎症或损伤可能引起血流的变化;PE+LPS组肝脏外观变化更加显著,颜色加深且质地变硬,提示PE可能加剧了脂多糖导致的肝损伤(图4A)。HE染色显示,PE组肝细胞的排列紊乱,但整体组织结构较为完整;LPS组肝细胞排列紊乱,细胞肿胀及炎性浸润现象较为明显,炎症反应增强;PE+LPS组病理改变最为严重,表现为肝细胞肿胀、细胞间隙增宽、炎性浸润显著。同时,PE增加了脂多糖引起的细胞SA-β-gal阳性染色及p21的表达,表明PE促进脂多糖引起的肝脏细胞衰老(图4A)。PE组肝重比高于CTRL组,PE+LPS组肝重比高于LPS组(图4B)。与CTRL组比较,PE组和LPS组血浆AST水平升高;更为重要的是,与LPS组相比,PE+LPS组AST水平进一步升高,表明PE显著加剧了脂多糖诱导的肝损伤(图4C)。同时,单独使用PE处理对肝脏没有明显损伤作用,但与LPS组相比,PE+LPS组TUNEL染色阳性细胞数显著增加,表明PE加重了脂多糖诱导的肝脏细胞凋亡(图4D)。

图4

图4   PE加剧脂多糖诱导的肝损伤

Note: Mice were divided into the PE group, lipopolysaccharide (LPS) group, and PE+LPS group by intraperitoneal injection of PE, LPS, and PE combined with LPS, respectively, with an additional blank control (CTRL) group. A. General morphology, HE staining and immunohistochemistry of the liver from the four groups of mice. HE staining, bar=100 μm; SA-β-gal immunohistochemistry, bar=200 μm; p21 immunohistochemistry, bar=100 μm. Red arrows indicate p21-positive cells. B. Percentages of liver weight. C. Plasma AST in the indicated mice. D. TUNEL staining of liver, bar=50 μm. Red arrows indicate TUNEL-positive cells. P<0.001, P=0.041, P=0.037.

Fig 4   PE exacerbates lipopolysaccharide-induced liver injury


2.5 PE引起内质网应激促进肝脏衰老及衰老相关分泌表型表达

为探究内质网应激在PE加重脂多糖诱导的肝损伤中的调控及作用,本研究检测小鼠肝脏内质网应激相关基因的表达。与体外实验结果一致,与LPS组比较,PE+LPS组XBP1s表达显著上调(图5A)。同时,与CTRL组比较,PE显著上调了p21p16 mRNA表达;与LPS组比较,PE+LPS组p21p16 mRNA的表达上调更为显著(图5B、C)。与LPS组比较,PE+LPS显著增加了肝脏衰老相关分泌表型基因Tnf-αIl-6Il-1βCxcl1Mmp13的mRNA表达(图D~H)。以上结果表明PE引起内质网应激促进肝脏衰老及衰老相关分泌表型表达,加剧脂多糖诱导的肝损伤。

图5

图5   PE促进肝脏内质网应激、细胞衰老及衰老相关分泌表型基因表达

Note: A. Western blotting analysis of liver lysates from the control (CTRL), PE, LPS, and PE+LPS groups. B‒H. Quantitative real-time PCR analysis of senescence markers and SASP mRNA expression in mouse liver, including p21 (B), p16 (C), Tnf-α (D), Il-6 (E), Il-1β (F), Cxcl1 (G)and Mmp13 (H). P=0.019, P=0.024, P=0.046, P=0.002, P=0.010, P=0.014, P=0.003, P=0.006, P=0.007, P=0.008, P=0.018.

Fig 5   PE promotes the expression of endoplasmic reticulum stress, cellular senescence, and SASP-related genes in the liver


3 讨论

脂质在衰老和免疫反应中的重要作用已经得到越来越多的关注,特别是磷脂作为细胞膜重要组成成分之一,在细胞内的信号调控作用不容忽视。研究22表明,非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)小鼠肝脏中PE水平显著高于正常小鼠,而外源性PE可通过BAX/BCL2通路诱导小鼠肝细胞凋亡,从而导致NASH小鼠的肝损伤进一步加重。过表达乙醇胺-磷酸解磷酶(ethanolamine-phosphate phospho-lyase,ETNPPL)会减少PE合成的原料——磷酸乙醇胺(phosphoethanolamine,PE)在衰老细胞中的累积,进而抑制成纤维细胞衰老标志物的表达23。PE可与细胞表面蛋白CD300a结合介导多种病毒的感染24。PE在正常人肺成纤维细胞中诱导抗纤维化表型,并改善博来霉素诱导的小鼠肺纤维化25。同样,也有研究26报道PE通过触发小鼠心肌细胞铁死亡加重血管紧张素Ⅱ诱导的心房纤维化。本研究探索了PE对细胞衰老及免疫反应在巨噬细胞和肝脏中的作用。RAW264.7细胞作为永生化小鼠巨噬细胞系,无需从动物原代分离,培养成本低,并且保留巨噬细胞典型特征,如吞噬能力、脂多糖响应性、一氧化氮(nitric oxide,NO)/活性氧(reactive oxygen species,ROS)生成、炎症因子分泌等,适用于炎症、免疫调控及信号通路研究;其基因背景稳定、功能可塑性强,适合药物筛选17-18。实验结果表明,PE促进RAW264.7巨噬细胞衰老及衰老相关分泌表型表达。同时,PE增强肝脏衰老相关分泌表型生物活性因子的产生,加剧了脂多糖诱导的肝损伤。PE在生理状态和病理状态下的表现具有较大差异。比如,相对于阿霉素的处理,在未经预处理的RAW264.7细胞中PE促衰老作用并不明显,以及单独连续给药1周后,小鼠的肝重比显著增加,而损伤情况并不明显。我们推测PE表现出不同作用可能与PE的剂量以及实验对象的不同状态有关,这可能也是当前PE的作用具有争议的原因。

内质网应激被认为是衰老过程中一个重要的分子机制,其通过未折叠蛋白反应(unfolded protein response,UPR)启动一系列细胞应激反应。PE可能通过加强内质网应激促使巨噬细胞向衰老表型转变,进而加剧局部炎症反应。巨噬细胞衰老相关分泌表型的主要生物活性因子之一IL-6是肝细胞增生过程中重要的启动因子,同时也是激活信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)的主要细胞因子27。在内质网应激过程中,IRE1α的表达上调能激活细胞中IL-6的表达并会随着IRE1α-XBPl途径中XBP1剪切形式XBP1s的增加而显著增加28。转录组测序结果显示,PE显著激活内质网应激相关信号通路。PE通过促进内质网应激,并可能是通过诱导内质网功能失调来改变巨噬细胞的生理状态,从而促进其衰老进程。由于PE处理显著促进RAW264.7细胞发生内质网应激,而且在内质网应激所有的信号通路中,IRE1α-XBP1信号通路变化最为显著,因此本研究利用XBP1s特异性抑制剂丰加霉素证实PE主要通过激活XBP1信号通路促进巨噬细胞衰老及衰老相关分泌表型表达。本研究参考相关的研究29-30并结合预实验结果发现,丰加霉素在高浓度(1 μmol/L)的情况下会抑制细胞增殖,随时间延长发生细胞死亡,而低浓度的情况下(1~100 nmol/L)对细胞没有明显毒性。因此,本研究在实验中使用20 nmol/L处理细胞且没有发现细胞死亡,XBP1s也得到有效抑制。这种实验设计既确保了XBP1通路抑制的有效性,又排除了细胞毒性对实验结果的影响。本研究结果表明PE是通过内质网应激通路调节巨噬细胞功能的一个关键分子,为进一步探索PE在细胞衰老和免疫调控中的作用提供了重要的数据支持。

肝脏作为主要的代谢器官,在衰老过程中的免疫反应改变可能是导致其功能衰退的关键因素。本研究观察到动物实验中PE暴露引发肝脏病理改变,特别是炎症因子Tnf-α、Il-6、Il-1β、Cxcl1Mmp13表达增加,而巨噬细胞是肝内促炎因子的主要来源31,提示肝脏巨噬细胞可能参与发挥作用。尽管目前未直接检测肝脏组织中巨噬细胞是否衰老,但结合PE直接引发巨噬细胞衰老的体外证据以及PE通过促进内质网应激诱导肝脏衰老标志物p21p16的表达增加,尤其是衰老相关分泌表型显著增强,本研究推测PE在体内可能通过类似途径影响肝脏巨噬细胞衰老。在后续研究中,我们将通过在肝脏组织中检测衰老标志物与巨噬细胞共定位以进一步验证巨噬细胞衰老表型。此外,这些衰老相关炎症因子分泌进一步推动免疫微环境的炎症反应,形成恶性循环,加剧脂多糖诱导的肝损伤。在体内是否可以通过抑制内质网应激减轻PE对脂多糖诱导的肝损伤的加剧将在后续实验中进一步证实。

本研究揭示PE通过激活内质网应激信号通路,促进巨噬细胞衰老及衰老相关分泌表型生物活性因子分泌,加重脂多糖诱导的肝损伤。这一发现为阐明脂质在衰老及免疫调控中的作用提供了新的视角,并为进一步研究脂质代谢在免疫衰老和衰老相关肝病中的作用提供了新的证据。

伦理批准和知情同意

本研究经上海交通大学医学院动物福利与使用委员会批准(审批号:JUMC2023-173-A),研究中涉及的所有动物实验均按照上海交通大学医学院《实验动物福利和使用指南》操作。

Ethics Approval and Patient Consent

This study was reviewed and approved by Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University School of Medicine (Approval Letter No. JUMC2023-173-A). All experimental animal protocols in this study were conducted in accordance with the Guidelines for Animal Welfare and Use of Experimental Animals of Shanghai Jiao Tong University School of Medicine.

作者贡献声明

韩龙传负责实验操作、数据整理分析、论文撰写及修改,李悦参与实验操作和论文修改,邹智慧和罗静参与数据分析和论文修改,李若伊参与动物实验和论文修改,张颖婷、唐欣欣、田丽红、陆宇恒、黄莺参与论文修改,贺明和付寅坤负责课题设计和论文修改。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

HAN Longchuan was primarily responsible for conducting experiments, organizing and analyzing data, and drafting and revising the manuscript. LI Yue contributed to experimental operations and manuscript revision. ZOU Zhihui and LUO Jing participated in data analysis and manuscript revisions. LI Ruoyi contributed to animal experiments and manuscript revisions. ZHANG Yingting, TANG Xinxin, TIAN Lihong, LU Yuheng and HUANG Ying participated in manuscript revisions. HE Ming and FU Yinkun were responsible for project design and manuscript revisions. All authors have read the final version of the paper and agreed to its submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278.

[本文引用: 1]

ZHANG L, PITCHER L E, YOUSEFZADEH M J, et al. Cellular senescence: a key therapeutic target in aging and diseases[J]. J Clin Invest, 2022, 132(15): e158450.

[本文引用: 1]

GUO J, HUANG X Q, DOU L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments[J]. Signal Transduct Target Ther, 2022, 7(1): 391.

[本文引用: 1]

SWEET M J, RAMNATH D, SINGHAL A, et al. Inducible antibacterial responses in macrophages[J]. Nat Rev Immunol, 2025, 25: 92-107.

[本文引用: 1]

PEISELER M, DAVID B A, ZINDEL J, et al. Kupffer cell-like syncytia replenish resident macrophage function in the fibrotic liver[J]. Science, 2023, 381(6662): eabq5202.

[本文引用: 1]

WANG L L, HONG W X, ZHU H, et al. Macrophage senescence in health and diseases[J]. Acta Pharm Sin B, 2024, 14(4): 1508-1524.

[本文引用: 1]

LIU Z Q, LIANG Q M, REN Y Q, et al. Immunosenescence: molecular mechanisms and diseases[J]. Signal Transduct Target Ther, 2023, 8(1): 200.

[本文引用: 1]

ZHAO B H, WU B, FENG N, et al. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications[J]. J Hematol Oncol, 2023, 16(1): 28.

[本文引用: 1]

BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24): 1565-1576.

[本文引用: 1]

LEON K E, BUJ R, LESKO E, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A[J]. J Cell Biol, 2021, 220(8): e202008101.

[本文引用: 1]

WANG B S, HAN J, ELISSEEFF J H, et al. The senescence-associated secretory phenotype and its physiological and pathological implications[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 958-978.

[本文引用: 1]

ROH K, NOH J, KIM Y, et al. Lysosomal control of senescence and inflammation through cholesterol partitioning[J]. Nat Metab, 2023, 5(3): 398-413.

[本文引用: 1]

YOSHIMOTO S, LOO T M, ATARASHI K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456): 97-101.

[本文引用: 1]

LIU X, HARTMAN C L, LI L Y, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy[J]. Sci Transl Med, 2021, 13(587): eaaz6314.

[本文引用: 1]

GIBELLINI F, SMITH T K. The Kennedy pathway: de novo synthesis of phosphatidylethanolamine and phosphatidylcholine[J]. IUBMB Life, 2010, 62(6): 414-428.

[本文引用: 1]

PATEL D, WITT S N. Ethanolamine and phosphatidylethanolamine: partners in health and disease[J]. Oxid Med Cell Longev, 2017, 2017: 4829180.

[本文引用: 1]

TACIAK B, BIAŁASEK M, BRANIEWSKA A, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages[J]. PLoS One, 2018, 13(6): e0198943.

[本文引用: 2]

FACCHIN B M, DOS REIS G O, VIEIRA G N, et al. Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis[J]. Inflamm Res, 2022, 71(7/8): 741-758.

[本文引用: 2]

YEN L, SVENDSEN J, LEE J S, et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage[J]. Nature, 2004, 431(7007): 471-476.

[本文引用: 1]

EL MANAA W, DUPLAN E, GOIRAN T, et al. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology[J]. Autophagy, 2021, 17(12): 4363-4385.

ZHANG G Z, ZHAN M S, ZHANG C C, et al. Redox-responsive dendrimer nanogels enable ultrasound-enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization[J]. Adv Sci (Weinh), 2023, 10(24): e2301759.

[本文引用: 1]

XUE L J, LIU K, YAN C X, et al. Schisandra lignans ameliorate nonalcoholic steatohepatitis by regulating aberrant metabolism of phosphatidylethanolamines[J]. Acta Pharm Sin B, 2023, 13(8): 3545-3560.

[本文引用: 1]

TIGHANIMINE K, NABUCO LEVA FERREIRA FREITAS J A, NEMAZANYY I, et al. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism[J]. Nat Metab, 2024, 6(2): 323-342.

[本文引用: 1]

ZHANG L Z, RICHARD A S, JACKSON C B, et al. Phosphatidylethanolamine and phosphatidylserine synergize to enhance GAS6/AXL-mediated virus infection and efferocytosis[J]. J Virol, 2020, 95(2): e02079-20.

[本文引用: 1]

VAZQUEZ-DE-LARA L G, TLATELPA-ROMERO B, ROMERO Y, et al. Phosphatidylethanolamine induces an antifibrotic phenotype in normal human lung fibroblasts and ameliorates bleomycin-induced lung fibrosis in mice[J]. Int J Mol Sci, 2018, 19(9): 2758.

[本文引用: 1]

HUANG F Z, LIU X M, LIU J J, et al. Phosphatidylethanolamine aggravates Angiotensin Ⅱ-induced atrial fibrosis by triggering ferroptosis in mice[J]. Front Pharmacol, 2023, 14: 1148410.

[本文引用: 1]

LI L, CUI L, LIN P, et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers[J]. Cell Stem Cell, 2023, 30(3): 283-299.e9.

[本文引用: 1]

FANG P P, XIANG L X, HUANG S S, et al. IRE1α-XBP1 signaling pathway regulates IL-6 expression and promotes progression of hepatocellular carcinoma[J]. Oncol Lett, 2018, 16(4): 4729-4736.

[本文引用: 1]

RI M, TASHIRO E, OIKAWA D, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing[J]. Blood Cancer J, 2012, 2(7): e79.

[本文引用: 1]

SONG N, SONG Y Q, HU B B, et al. Persistent endoplasmic reticulum stress stimulated by peptide assemblies for sensitizing cancer chemotherapy[J]. Adv Healthcare Mater, 2023, 12(5): 2202039.

[本文引用: 1]

YIN N, ZHANG W J, SUN X X, et al. Artificial cells delivering itaconic acid induce anti-inflammatory memory-like macrophages to reverse acute liver failure and prevent reinjury[J]. Cell Rep Med, 2023, 4(8): 101132.

[本文引用: 1]

/