1 |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
|
2 |
Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.
|
3 |
Liu JZ, Yue YN, Han DL, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95.
|
4 |
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites[J]. Cell Rep, 2014, 8(1): 284-296.
|
5 |
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189.
|
6 |
Zheng GQ, Dahl JA, Niu YM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
|
7 |
Jia GF, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887.
|
8 |
Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4): 507-519.
|
9 |
Roundtree IA, Luo GZ, Zhang ZJ, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6: e31311.
|
10 |
Patil DP, Chen CK, Pickering BF, et al. M6A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373.
|
11 |
Chen T, Hao YJ, Zhang Y, et al. M6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency[J]. Cell Stem Cell, 2015, 16(3): 289-301.
|
12 |
朱正阳, 王成, 姜辰一, 等. RNA N6-甲基腺嘌呤异常修饰影响肿瘤干细胞促进恶性肿瘤发生、发展的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(3): 385-390.
|
13 |
朱屿倩, 吴凌云. m6A甲基化修饰在血液系统恶性肿瘤中的作用研究进展[J]. 上海交通大学学报(医学版), 2020, 40(3): 396-401.
|
14 |
Li ZJ, Weng HY, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1): 127-141.
|
15 |
Cui Q, Shi HL, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017, 18(11): 2622-2634.
|
16 |
Yang S, Wei JB, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1): 2782.
|
17 |
Niu Y, Lin ZY, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18(1): 46.
|
18 |
Li J, Han Y, Zhang HM, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA[J]. Biochem Biophys Res Commun, 2019, 512(3): 479-485.
|
19 |
Liu JQ, Ren DL, Du ZH, et al. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502(4): 456-464.
|
20 |
Huang Y, Yan JL, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1): 373-384.
|
21 |
Peng SM, Xiao W, Ju DP, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1[J]. Sci Transl Med, 2019, 11(488): eaau7116.
|
22 |
Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35(4): 677-691.
|
23 |
Chen BE, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43): 17963-17971.
|
24 |
Li Q, Huang Y, Liu XC, et al. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage[J]. J Biol Chem, 2016, 291(21): 11083-11093.
|
25 |
Qiao Y, Zhou B, Zhang MZ, et al. A novel inhibitor of the obesity-related protein FTO[J]. Biochemistry, 2016, 55(10): 1516-1522.
|
26 |
Padariya M, Kalathiya U. Structure-based design and evaluation of novel N-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition[J]. Comput Biol Chem, 2016, 64: 414-425.
|
27 |
Wang RY, Han ZF, Liu BJ, et al. Identification of natural compound radicicol as a potent FTO inhibitor[J]. Mol Pharm, 2018, 15(9): 4092-4098.
|
28 |
Han XX, Wang N, Li JY, et al. Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity[J]. Chem Biol Interact, 2019, 297: 80-84.
|
29 |
Wang Y, Li JY, Han XX, et al. Identification of Clausine E as an inhibitor of fat mass and obesity-associated protein (FTO) demethylase activity[J]. J Mol Recognit, 2019, 32(10): e2800.
|
30 |
Li JY, Wang Y, Han XX, et al. The role of chlorine atom on the binding between 2-phenyl-1H-benzimidazole analogues and fat mass and obesity-associated protein[J]. J Mol Recognit, 2019, 32(6): e2774.
|
31 |
Zhang SC, Zhao BS, Zhou AD, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J]. Cancer Cell, 2017, 31(4): 591-606.e6.
|
32 |
Malacrida A, Rivara M, Domizio DA, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line[J]. Bioorg Med Chem, 2020, 28(4): 115300.
|
33 |
Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control[J]. Nature, 2017, 552(7683): 126-131.
|
34 |
Vu LP, Pickering BF, Cheng YM, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017, 23(11): 1369-1376.
|
35 |
Wang Q, Chen C, Ding QQ, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205.
|
36 |
Chen MN, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270.
|
37 |
Bedi RK, Huang D, Eberle SA, et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer[J]. Chem Med Chem, 2020, 15(9). DOI:10.1002/cmdc.202000011.
|
38 |
Li ML, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8): 872-876.
|
39 |
Li ML, Liu FT, Zhang F, et al. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis[J]. Gut, 2019, 68(6): 1024-1033.
|
40 |
Gao Y, Wang Z, Zhu YD, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma[J]. Cancer Sci, 2019, 110(11): 3510-3519.
|