1 |
郑胡镛. 从北京儿童医院看儿童白血病治疗的发展[J]. 中国小儿血液与肿瘤杂志, 2019, 24(6): 282.
|
2 |
SHAHRIARI M, SHAKIBAZAD N, HAGHPANAH S, et al. Extramedullary manifestations in acute lymphoblastic leukemia in children: a systematic review and guideline-based approach of treatment[J]. Am J Blood Res, 2020, 10(6): 360-374.
|
3 |
TANG J, YU J, CAI J, et al. Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation[J]. Blood, 2021, 138(4): 331-343.
|
4 |
PUI C H, YANG J J, BHAKTA N, et al. Global efforts toward the cure of childhood acute lymphoblastic leukaemia[J]. Lancet Child Adolesc Health, 2018, 2(6): 440-454.
|
5 |
蔡娇阳, 王宁玲, 蒋慧, 等. 儿童急性淋巴细胞白血病2005方案多中心远期临床报告[J]. 中华儿科杂志, 2018, 56(7): 511-517.
|
6 |
ROETEN M S F, VAN MEERLOO J, KWIDAMA Z J, et al. Pre-clinical evaluation of the proteasome inhibitor ixazomib against bortezomib-resistant leukemia cells and primary acute leukemia cells[J]. Cells, 2021, 10(3): 665.
|
7 |
OSKARSSON T, SÖDERHÄLL S, ARVIDSON J, et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2018, 65(4): e26909.
|
8 |
BROWN P, INABA H, ANNESLEY C, et al. Pediatric acute lymphoblastic leukemia, version 2. 2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(1): 81-112.
|
9 |
MESRIAN TANHA H, MOJTABAVI NAEINI M, RAHGOZAR S, et al. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment[J]. Tumour Biol, 2016, 37(6): 7861-7872.
|
10 |
DE SMEDT R, MORSCIO J, GOOSSENS S, et al. Targeting steroid resistance in T-cell acute lymphoblastic leukemia[J]. Blood Rev, 2019, 38: 100591.
|
11 |
OLIVAS-AGUIRRE M, TORRES-LÓPEZ L, POTTOSIN I, et al. Overcoming glucocorticoid resistance in acute lymphoblastic leukemia: repurposed drugs can improve the protocol[J]. Front Oncol, 2021, 11: 617937.
|
12 |
EMADALI A, HOGHOUGHI N, DULEY S, et al. Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms[J]. Blood, 2016, 127(24): 3040-3053.
|
13 |
XIAO H, DING Y, GAO Y, et al. Haploinsufficiency of NR3C1 drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage[J]. Cancer Cell Int, 2019, 19: 218.
|
14 |
SAKURAI N, KOMADA Y, HANAKI R, et al. Role of microRNAs in glucocorticoid‑resistant B‑cell precursor acute lymphoblastic leukemia[J]. Oncol Rep, 2019, 42(2): 708-716.
|
15 |
LIANG Y N, TANG Y L, KE Z Y, et al. miR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor[J]. J Steroid Biochem Mol Biol, 2017, 172: 62-68.
|
16 |
SCIARRILLO R, WOJTUSZKIEWICZ A, KOOI IE, et al. Glucocorticoid resistant pediatric acute lymphoblastic leukemia samples display altered splicing profile and vulnerability to spliceosome modulation[J]. Cancers, 2020, 12(3): 723.
|
17 |
ZHAO Q, ZHAO S, LI J, et al. TCF7L2 activated HOXA-AS2 decreased the glucocorticoid sensitivity in acute lymphoblastic leukemia through regulating HOXA3/EGFR/Ras/Raf/MEK/ERK pathway[J]. Biomed Pharmacother, 2019, 109: 1640-1649.
|
18 |
JING D, HUANG Y, LIU X, et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia[J]. Cancer Cell, 2018, 34(6): 906-921.e8.
|
19 |
POULARD C, BAULU E, LEE BH, et al. Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death[J]. Cell Death Dis, 2018, 9(10): 1038.
|
20 |
STEEGHS E M P, BOER J M, HOOGKAMER A Q, et al. Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia[J]. Sci Rep, 2019, 9(1): 4634.
|
21 |
RODERICK J E, GALLAGHER K M, MURPHY L C, et al. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death[J]. Blood, 2021, 137(4): 500-512.
|
22 |
LIU Z, LI F, RUAN K, et al. Structural and functional insights into the human Börjeson-Forssman-Lehmann syndrome-associated protein PHF6[J]. J Biol Chem, 2014, 289(14): 10069-10083.
|
23 |
XIANG J, WANG G, XIA T, et al. The depletion of PHF6 decreases the drug sensitivity of T-cell acute lymphoblastic leukemia to prednisolone[J]. Biomed Pharmacother, 2019, 109: 2210-2217.
|
24 |
LIU S G, YUE Z X, LI Z G, et al. β-catenin promotes MTX resistance of leukemia cells by down-regulating FPGS expression via NF-κB[J]. Cancer Cell Int, 2020, 20: 271.
|
25 |
WOJTUSZKIEWICZ A, RAZ S, STARK M, et al. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance[J]. Int J Cancer, 2016, 138(7): 1645-1656.
|
26 |
JARAMILLO A C, CLOOS J, LEMOS C, et al. Ex vivo resistance in childhood acute lymphoblastic leukemia: correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation[J]. Leuk Res, 2019, 79: 45-51.
|
27 |
MESRIAN TANHA H, RAHGOZAR S, MOJTABAVI NAEINI M. ABCC4 functional SNP in the 3' splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia[J]. Cancer Chemother Pharmacol, 2017, 80(1): 109-117.
|
28 |
XU H, ZHAO X J, BHOJWANI D, et al. ARID5B influences antimetabolite drug sensitivity and prognosis of acute lymphoblastic leukemia[J]. Clin Cancer Res, 2020, 26(1): 256-264.
|
29 |
TAMAI M, HUANG M, KAGAMI K, et al. Association of relapse-linked ARID5B single nucleotide polymorphisms with drug resistance in B-cell precursor acute lymphoblastic leukemia cell lines[J]. Cancer Cell Int, 2020, 20(1): 434.
|
30 |
XUE Y, RONG L C, TONG N, et al. CCND1 G870A polymorphism is associated with toxicity of methotrexate in childhood acute lymphoblastic leukemia[J]. Int J Clin Exp Pathol, 2015, 8(9): 11594-11600.
|
31 |
DIECK C L, FERRANDO A. Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL[J]. Blood, 2019, 133(21): 2263-2268.
|
32 |
TZONEVA G, DIECK C L, OSHIMA K, et al. Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia[J]. Nature, 2018, 553(7689): 511-514.
|
33 |
MORIYAMA T, LIU S G, LI J, et al. Mechanisms of NT5C2-mediated thiopurine resistance in acute lymphoblastic leukemia[J]. Mol Cancer Ther, 2019, 18(10): 1887-1895.
|
34 |
TZONEVA G, PEREZ-GARCIA A, CARPENTER Z, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL[J]. Nat Med, 2013, 19(3): 368-371.
|
35 |
BARZ M J, HOF J, GROENEVELD-KRENTZ S, et al. Subclonal NT5C2 mutations are associated with poor outcomes after relapse of pediatric acute lymphoblastic leukemia[J]. Blood, 2020, 135(12): 921-933.
|
36 |
HOVE-JENSEN B, ANDERSEN K R, KILSTRUP M, et al. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance[J]. Microbiol Mol Biol Rev, 2017, 81(1). DOI:10.1128/mmbr.00040-16.
|
37 |
LI B, LI H, BAI Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL[J]. Nat Med, 2015, 21(6): 563-571.
|
38 |
EVENSEN N A, MADHUSOODHAN P P, MEYER J, et al. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia[J]. Haematologica, 2018, 103(5): 830-839.
|
39 |
YU S L, ZHANG H, HO B C, et al. FPGS relapse-specific mutations in relapsed childhood acute lymphoblastic leukemia[J]. Sci Rep, 2020, 10(1): 12074.
|
40 |
LEE J K, KANG S, WANG X, et al. HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway[J]. Blood, 2019, 133(20): 2222-2232.
|
41 |
HINZE L, PFIRRMANN M, KARIM S, et al. Synthetic lethality of Wnt pathway activation and asparaginase in drug-resistant acute leukemias[J]. Cancer Cell, 2019, 35(4): 664-676.e7.
|
42 |
WILLIAMS R T, GUARECUCO R, GATES L A, et al. ZBTB1 regulates asparagine synthesis and leukemia cell response to L-asparaginase[J]. Cell Metab, 2020, 31(4): 852-861.e6.
|
43 |
ABERUYI N, RAHGOZAR S, POURABUTALEB E, et al. Selective dysregulation of ABC transporters in methotrexate-resistant leukemia T-cells can confer cross-resistance to cytarabine, vincristine and dexamethasone, but not doxorubicin[J]. Curr Res Transl Med, 2021, 69(1): 103269.
|
44 |
FU J Q, SI L B, ZHUANG Y, et al. Wnt/β‑catenin inhibition reverses multidrug resistance in pediatric acute lymphoblastic leukemia[J]. Oncol Rep, 2019: 41(2): 1387-1394.
|
45 |
KARTNER N, RIORDAN J R, LING V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines[J]. Science, 1983, 221(4617): 1285-1288.
|
46 |
WEI L, SUN J, ZHANG N, et al. Noncoding RNAs in gastric cancer: implications for drug resistance[J]. Mol Cancer, 2020, 19(1): 62.
|
47 |
WEI L, WANG X, LV L, et al. The emerging role of noncoding RNAs in colorectal cancer chemoresistance[J]. Cell Oncol (Dordr), 2019, 42(6): 757-768.
|
48 |
CAPELÔA T, BENYAHIA Z, ZAMPIERI L X, et al. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines[J]. Semin Cell Dev Biol, 2020, 98: 181-191.
|
49 |
MORELL A, ČERMÁKOVÁ L, NOVOTNÁ E, et al. Bruton's tyrosine kinase inhibitors ibrutinib and acalabrutinib counteract anthracycline resistance in cancer cells expressing AKR1C3[J]. Cancers, 2020, 12(12): 3731.
|
50 |
NOVOTNÁ E, MORELL A, BÜKÜM N, et al. Interactions of antileukemic drugs with daunorubicin reductases: could reductases affect the clinical efficacy of daunorubicin chemoregimens? [J]. Arch Toxicol, 2020, 94(9): 3059-3068.
|
51 |
GAO C, LIU S G, LU W T, et al. Downregulating CREBBP inhibits proliferation and cell cycle progression and induces daunorubicin resistance in leukemia cells[J]. Mol Med Rep, 2020, 22(4): 2905-2915.
|