1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
CORLEY D A, JENSEN C D, MARKS A R, et al. Adenoma detection rate and risk of colorectal cancer and death[J]. N Engl J Med, 2014, 370(14): 1298-1306.
|
3 |
KAMINSKI M F, REGULA J, KRASZEWSKA E, et al. Quality indicators for colonoscopy and the risk of interval cancer[J]. N Engl J Med, 2010, 362(19): 1795-1803.
|
4 |
AHN S B, HAN D S, BAE J H, et al. The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies[J]. Gut Liver, 2012, 6(1): 64-70.
|
5 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
6 |
KARKANIS S A, IAKOVIDIS D K, MAROULIS D E, et al. Computer-aided tumor detection in endoscopic video using color wavelet features[J]. IEEE Trans Inf Technol Biomed, 2003, 7(3): 141-152.
|
7 |
GONG D X, WU L L, ZHANG J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 352-361.
|
8 |
WANG P, BERZIN T M, GLISSEN BROWN J R, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68(10): 1813-1819.
|
9 |
SU J R, LI Z, SHAO X J, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos)[J]. Gastrointest Endosc, 2020, 91(2): 415-424.e4.
|
10 |
BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Comput Med Imaging Graph, 2015, 43: 99-111.
|
11 |
FERNÁNDEZ-ESPARRACH G, BERNAL J, LÓPEZ-CERÓN M, et al. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps[J]. Endoscopy, 2016, 48(9): 837-842.
|
12 |
SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. Int J Comput Assist Radiol Surg, 2014, 9(2): 283-293.
|
13 |
JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-seg: a segmented polyp dataset[C]//26th International Conference, MMM 2020, Daejeon, South Korea, January 5-8, 2020, Proceedings, Part Ⅱ. Cham: Springer, 2020: 451-462.
|
14 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[Z/OL]. (2018-04-08)[2021-09-10]. https://arxiv.org/pdf/1804.02767v1.pdf
|
15 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
|
16 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[Z/OL]. (2017-01-30)[2021-09-10]. https//arxiv.org/pdf/1412.6298.pdf.
|
17 |
REX D K, KAHI C, O'BRIEN M, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps[J]. Gastrointest Endosc, 2011, 73(3): 419-422.
|
18 |
FUKUTOMI H. Endoscopic diagnosis of protruding lesions of the stomach[J]. Iryo, 1967, 21(8):940-946.
|
19 |
KAMINSKI M F, ANDERSON J, VALORI R, et al. Leadership training to improve adenoma detection rate in screening colonoscopy: a randomised trial[J]. Gut, 2016, 65(4): 616-624.
|
20 |
WANG W H, XU L, BAO Z F, et al. Differences with experienced nurse assistance during colonoscopy in detecting polyp and adenoma: a randomized clinical trial[J]. Int J Colorectal Dis, 2018, 33(5): 561-566.
|
21 |
LIU A H, WANG H S, LIN Y J, et al. Gastrointestinal endoscopy nurse assistance during colonoscopy and polyp detection: a PRISMA-compliant meta-analysis of randomized control trials[J]. Medicine (Baltimore), 2020, 99(34): e21278.
|
22 |
REPICI A, HASSAN C. Artificial intelligence for colonoscopy: the new Silk Road[J]. Endoscopy, 2021, 53(3): 285-287.
|
23 |
ALI S, DMITRIEVA M, GHATWARY N, et al. Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy[J]. Med Image Anal, 2021, 70: 102002.
|
24 |
BERZIN T M, TOPOL E J. Adding artificial intelligence to gastrointestinal endoscopy[J]. Lancet, 2020, 395(10223): 485.
|
25 |
MISAWA M, KUDO S E, MORI Y, et al. Current status and future perspective on artificial intelligence for lower endoscopy[J]. Dig Endosc, 2021, 33(2): 273-284.
|
26 |
LI J W, CHIA T, FOCK K M, et al. Artificial intelligence and polyp detection in colonoscopy: use of a single neural network to achieve rapid polyp localization for clinical use[J]. J Gastroenterol Hepatol, 2021, 36(12): 3298-3307.
|
27 |
DURAK S, BAYRAM B, BAKIRMAN T, et al. Deep neural network approaches for detecting gastric polyps in endoscopic images[J]. Med Biol Eng Comput, 2021, 59(7/8): 1563-1574.
|
28 |
KOGA S, IKEDA A, DICKSON D W. Deep learning-based model for diagnosing Alzheimer's disease and tauopathies[J]. Neuropathol Appl Neurobiol, 2022, 48(1): e12759.
|
29 |
KALAGER M, WIESZCZY P, LANSDORP-VOGELAAR I, et al. Overdiagnosis in colorectal cancer screening: time to acknowledge a blind spot[J]. Gastroenterology, 2018, 155(3): 592-595.
|
30 |
PAGGI S, RADAELLI F, REPICI A, et al. Advances in the removal of diminutive colorectal polyps[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(2): 237-244.
|
31 |
SCHOEFL R, ZIACHEHABI A, WEWALKA F. Small colorectal polyps[J]. Dig Dis, 2014, 33: 38-41.
|
32 |
VON RENTELN D, BARKUN A N. Increasing detection rates for diminutive adenomas: are we on the right track? [J]. Gut, 2016, 65(6): 1056-1057.
|