上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (9): 1221-1231.doi: 10.3969/j.issn.1674-8115.2025.09.014

• 论著 · 技术与方法 • 上一篇    下一篇

基于图神经网络的胆囊癌CT影像辅助诊断模型

尹梓名1, 王荣钦1, 杨自逸2, 刘颖斌3, 陈涛3, 束翌俊2, 龚伟2()   

  1. 1.上海理工大学健康科学与工程学院,上海 200093
    2.上海交通大学医学院附属新华医院普外科,上海 200092
    3.上海交通大学医学院附属仁济医院胆胰外科,上海 200127
  • 收稿日期:2025-06-09 接受日期:2025-08-25 出版日期:2025-09-28 发布日期:2025-09-30
  • 通讯作者: 龚 伟,主任医师,博士;电子信箱:gongwei@xinhuamed.com.cn
  • 基金资助:
    国家自然科学基金面上项目(82173081);上海市卫生健康委员会卫生健康青年人才(2022YQ002);上海交通大学医学院“双百人”项目(20151001)

Graph neural network-based auxiliary diagnostic model for gallbladder cancer on CT imaging

YIN Ziming1, WANG Rongqin1, YANG Ziyi2, LIU Yingbin3, CHEN Tao3, SHU Yijun2, GONG Wei2()   

  1. 1.School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    3.Department of Hepatobiliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
  • Received:2025-06-09 Accepted:2025-08-25 Online:2025-09-28 Published:2025-09-30
  • Contact: GONG Wei, E-mail: gongwei@xinhuamed.com.cn.
  • Supported by:
    National Natural Science Foundation of China(82173081);Young Talents in Health of Shanghai Municipal Health Commission(2022YQ002);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20151001)

摘要:

目的·建立一种基于图神经网络(graph neural network,GNN)的胆囊癌CT影像辅助诊断模型,并验证其准确性与可行性。方法·收集2010年1月至2023年11月上海交通大学医学院附属新华医院和附属仁济医院887例正常胆囊、胆囊良性疾病、胆囊癌患者的1 774张腹部增强CT动脉期影像,按照4∶1随机划分为训练集和测试集,建立GNN和卷积神经网络(convolutional neural network,CNN)混合架构的模型VJK-GIN。该模型通过像素级的图构建方式,将每个像素作为图中的一个节点,空间邻接为边,从中提取图像局部纹理特征。在模型结构设计上,VJK-GIN模型采用3层图同构网络模块,并引入虚拟节点模块和跳跃知识机制,最后采用全局池化操作将节点特征压缩为图表示,并通过多层感知机分类器输出诊断结果。通过五折交叉验证法,比较VJK-GIN模型与其他GNN(GCN、GraphSAGE、GAT和GIN)、CNN(ViT、EfficientNetV2和ConvNeXt)模型的准确率、精确度、召回率、F1分数以及受试者操作特征曲线(receiver operator characteristic curve,ROC曲线)下面积(area under curve,AUC)。结果·五折交叉验证法结果显示,VJK-GIN模型的F1分数为0.799(95%CI 0.775~0.823),召回率为0.795(95%CI 0.773~0.817),精确度为0.799(95%CI 0.775~0.823),AUC为0.812(95%CI 0.792~0.832),准确率为0.773(95%CI 0.748~0.798),所有评估指标均优于其他模型。结论·VJK-GIN模型对于正常胆囊、胆囊良性疾病、胆囊癌增强CT图像识别的稳定性和准确性均较高。

关键词: 胆囊癌, 图神经网络, 卷积神经网络, 医学影像分析, 深度学习

Abstract:

Objective ·To develop a graph neural network (GNN)-based auxiliary diagnostic model for gallbladder cancer on CT images, and validate its accuracy and feasibility. Methods ·From January 2010 to November 2023, 1 774 contrast-enhanced CT arterial-phase images were acquired from 887 patients with normal gallbladder, benign gallbladder disease, or gallbladder cancer at Xinhua Hospital and Renji Hospital, Shanghai Jiao Tong University School of Medicine. These images were randomly divided into training and testing sets at a 4∶1 ratio to develop a hybrid GNN-convolutional neural network (CNN) model, named VJK-GIN. The model constructed a pixel-level graph in which each pixel served as a node, and spatial adjacency defined the edges, enabling extraction of local texture features. In the model architecture design, VJK-GIN integrated a three-layer graph isomorphism network, augmented with virtual nodes and jump-knowledge connections; global pooling compressed node features into a graph-level representation, which was classified by a multi-layer perceptron head. Five-fold cross-validation was used to compare VJK-GIN with GNN baselines (GCN, GraphSAGE, GAT, and GIN) and CNN baselines (ViT, EfficientNetV2, and ConvNeXt) in terms of accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). Results ·The results of five-fold cross-validation showed that VJK-GIN achieved an F1-score of 0.799 (95%CI 0.775‒0.823), recall of 0.795 (95%CI 0.773‒0.817), precision of 0.799 (95%CI 0.775‒0.823), AUC of 0.812 (95%CI 0.792‒0.832), and accuracy of 0.773 (95%CI 0.748‒0.798), surpassing all competing models across every metric. Conclusion ·The VJK-GIN model exhibits high stability and accuracy in identifying contrast-enhanced CT images of normal, benign, and malignant gallbladder conditions.

Key words: gallbladder cancer, graph neural network (GNN), convolutional neural network (CNN), medical image analysis, deep learning

中图分类号: