1 |
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47.
|
2 |
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31.
|
3 |
Leone RD, Powell JD. Metabolism of immune cells in cancer[J]. Nat Rev Cancer, 2020, 20(9): 516-531.
|
4 |
Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566.
|
5 |
Wang YP, Sharda A, Xu SN, et al. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis[J]. Cell Metab, 2021, 33(5): 1027-1041.e8.
|
6 |
Krug K, Jaehnig EJ, Satpathy S, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy[J]. Cell, 2020, 183(5): 1436-1456.e31.
|
7 |
Carrico C, Meyer JG, He W, et al. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications[J]. Cell Metab, 2018, 27(3): 497-512.
|
8 |
Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome[J]. Mol Cell, 2013, 49(1): 186-199.
|
9 |
Inuzuka H, Gao D, Finley LW, et al. Acetylation-dependent regulation of Skp2 function[J]. Cell, 2012, 150(1): 179-193.
|
10 |
Dong XC, Jing LM, Wang WX, et al. Down-regulation of SIRT3 promotes ovarian carcinoma metastasis[J]. Biochem Biophys Res Commun, 2016, 475(3): 245-250.
|
11 |
Torrens-Mas M, Pons DG, Sastre-Serra J, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production[J]. J Cell Biochem, 2017, 118(2): 397-406.
|
12 |
Bergaggio E, Riganti C, Garaffo G, et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies[J]. Blood, 2019, 133(2): 156-167.
|
13 |
Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1): 41-52.
|
14 |
Li M, Chiang YL, Lyssiotis CA, et al. Non-oncogene addiction to SIRT3 plays a critical role in lymphomagenesis[J]. Cancer Cell, 2019, 35(6): 916-931.e9.
|
15 |
Cheng J, Bawa T, Lee P, et al. Role of desumoylation in the development of prostate cancer[J]. Neoplasia, 2006, 8(8): 667-676.
|
16 |
He J, Cheng J, Wang T. SUMOylation-mediated response to mitochondrial stress[J]. Int J Mol Sci, 2020, 21(16): 5657.
|
17 |
Seeler JS, Dejean A. SUMO and the robustness of cancer[J]. Nat Rev Cancer, 2017, 17(3): 184-197.
|
18 |
Wang T, Cao Y, Zheng Q, et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell, 2019, 75(4): 823-834.e5.
|
19 |
He J, Shangguan X, Zhou W, et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development[J]. Nat Commun, 2021, 12(1): 4371.
|
20 |
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(6): 438-451.
|
21 |
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer[J]. Nat Rev Dis Primers, 2019, 5(1): 66.
|
22 |
Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial[J]. JAMA Oncol, 2018, 4(2): 230-234.
|
23 |
Horwitz S, O'Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial[J]. Lancet, 2019, 393(10168): 229-240.
|
24 |
Cesarman E, Damania B, Krown SE, et al. Kaposi sarcoma[J]. Nat Rev Dis Primers, 2019, 5(1): 9.
|
25 |
Basho RK, Gilcrease M, Murthy RK, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab[J]. JAMA Oncol, 2017, 3(4): 509-515.
|
26 |
Cai L, Tu J, Song L, et al. Proteome-wide mapping of endogenous SUMOylation sites in mouse testis[J]. Mol Cell Proteomics, 2017, 16(5): 717-727.
|
27 |
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
|
28 |
Guri Y, Colombi M, Dazert E, et al. mTORC2 promotes tumorigenesis via lipid synthesis[J]. Cancer Cell, 2017, 32(6): 807-823.e12.
|
29 |
Bogachek MV, Chen Y, Kulak MV, et al. Sumoylation pathway is required to maintain the basal breast cancer subtype[J]. Cancer Cell, 2014, 25(6): 748-761.
|
30 |
Kessler JD, Kahle KT, Sun T, et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis[J]. Science, 2012, 335(6066): 348-353.
|
31 |
Morris JR, Boutell C, Keppler M, et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress[J]. Nature, 2009, 462(7275): 886-890.
|
32 |
Madeddu C, Gramignano G, Floris C, et al. Role of inflammation and oxidative stress in post-menopausal oestrogen-dependent breast cancer[J]. J Cell Mol Med, 2014, 18(12): 2519-2529.
|