上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (8): 1094-1098.doi: 10.3969/j.issn.1674-8115.2021.08.016
出版日期:
2021-08-28
发布日期:
2021-08-13
通讯作者:
赵敏
E-mail:chengyj16@163.com;drminzhao@gmail.com
作者简介:
成英杰(1996—),女,博士生;电子信箱:chengyj16@163.com。
基金资助:
Ying-jie CHENG(), Qian-qian SUN, Min ZHAO()
Online:
2021-08-28
Published:
2021-08-13
Contact:
Min ZHAO
E-mail:chengyj16@163.com;drminzhao@gmail.com
Supported by:
摘要:
甲基苯丙胺(methamphetamine,METH)是一种中枢神经系统兴奋剂,具有很强的成瘾性和神经毒性。但是,METH成瘾的机制尚不明确。表观遗传可以在不影响DNA序列的情况下调控基因表达,是近年来的研究热点。越来越多的研究发现,表观遗传可能参与METH引起的脑结构和功能改变。该发现为探索METH成瘾的机制提供了新的思路。该文就甲基苯丙胺使用和成瘾的表观遗传研究进展进行综述。
中图分类号:
成英杰, 孙倩倩, 赵敏. 甲基苯丙胺使用和成瘾的表观遗传研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1094-1098.
Ying-jie CHENG, Qian-qian SUN, Min ZHAO. Research progress in epigenetics in methamphetamine use and addiction[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1094-1098.
1 | Chan B, Freeman M, Kondo K, et al. Pharmacotherapy for methamphetamine/amphetamine use disorder: a systematic review and meta-analysis [J]. Addiction, 2019, 114(12):2122-2136. |
2 | Volkow ND, Morales M. The brain on drugs: from reward to addiction[J]. Cell, 2015, 162(4): 712-725. |
3 | Waddington CH. The epigenotype [J]. Int J Epidemiol, 2012, 41(1): 10-13. |
4 | Nebbioso A, Tambaro FP, Dell'Aversana C, et al. Cancer epigenetics: moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. |
5 | Hwang JY, Aromolaran KA, Zukin RS. The emerging field of epigenetics in neurodegeneration and neuroprotection[J]. Nat Rev Neurosci, 2017, 18(6): 347-361. |
6 | Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction[J]. Curr Opin Neurobiol, 2013, 23(4): 521-528. |
7 | Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705. |
8 | Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. |
9 | Martin TA, Jayanthi S, McCoy MT, et al. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens[J]. PLoS One, 2012, 7(3): e34236. |
10 | Li H, Li F, Wu N, et al. Methamphetamine induces dynamic changes of histone deacetylases in different phases of behavioral sensitization[J]. CNS Neurosci Ther, 2014, 20(9): 874-876. |
11 | Jayanthi S, McCoy MT, Chen B, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms[J]. Biol Psychiatry, 2014, 76(1): 47-56. |
12 | Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents[J]. Epigenetics, 2015, 10(7): 574-580. |
13 | Li JX, Han R, Deng YP, et al. Different effects of valproate on methamphetamine- and cocaine-induced behavioral sensitization in mice[J]. Behav Brain Res, 2005, 161(1): 125-132. |
14 | Coccurello R, Caprioli A, Ghirardi O, et al. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice[J]. Ann N Y Acad Sci, 2007, 1122: 260-275. |
15 | Harkness JH, Hitzemann RJ, Edmunds S, et al. Effects of sodium butyrate on methamphetamine-sensitized locomotor activity[J]. Behav Brain Res, 2013, 239: 139-147. |
16 | Zhu J, Zhao N, Chen Y, et al. Sodium butyrate modulates a methamphetamine-induced conditioned place preference [J]. J Neurosci Res, 2017, 95(4): 1044-1052. |
17 | Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. |
18 | Krasnova IN, Chiflikyan M, Justinova Z, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat[J]. Neurobiol Dis, 2013, 58: 132-143. |
19 | Aguilar-Valles A, Vaissière T, Griggs EM, et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation[J]. Biol Psychiatry, 2014, 76(1): 57-65. |
20 | Ikegami D, Narita M, Imai S, et al. Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine [J]. Addict Biol, 2010, 15(3): 358-361. |
21 | González B, Jayanthi S, Gomez N, et al. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82: 1-11. |
22 | Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2): 81-92. |
23 | Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. |
24 | Itzhak Y, Ergui I, Young JI. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring[J]. Mol Psychiatry, 2015, 20(2): 232-239. |
25 | Biagioni F, Ferese R, Limanaqi F, et al. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons[J]. Brain Res, 2019, 1719: 157-175. |
26 | Salehzadeh SA, Mohammadian A, Salimi F. Effect of chronic methamphetamine injection on levels of BDNF mRNA and its CpG island methylation in prefrontal cortex of rats[J]. Asian J Psychiatr, 2020, 48: 101884. |
27 | Fan XY, Yang JY, Dong YX, et al. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the synaptophysin promoter[J]. Addict Biol, 2020, 25(1): e12697. |
28 | Yuka KS, Nishizawa D, Hasegawa J, et al. A single medical marker for diagnosis of methamphetamine addiction: DNA methylation of SHATI/NAT8L promoter sites from patient blood[J]. Curr Pharm Des, 2020, 26(2): 260-264. |
29 | Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain[J]. Brain Res, 2015, 1629: 126-134. |
30 | Jiang W, Li J, Zhang Z, et al. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine[J]. Eur J Pharmacol, 2014, 745: 243-248. |
31 | Lee HJ, Bae EJ, Lee SJ. Extracellular alpha-synuclein: a novel and crucial factor in Lewy body diseases [J]. Nat Rev Neurol, 2014, 10(2): 92-98. |
32 | Callaghan RC, Cunningham JK, Sajeev G, et al. Incidence of Parkinson′s disease among hospital patients with methamphetamine-use disorders[J]. Mov Disord, 2010, 25(14): 2333-2339. |
33 | Qi J, Yang JY, Wang F, et al. Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement[J]. Neuropharmacology, 2009, 56(5): 856-865. |
34 | Jayanthi S, Gonzalez B, McCoy MT, et al. Methamphetamine induces TET1-and TET3-dependent DNA hydroxymethylation of crh and avp genes in the rat nucleus accumbens[J]. Mol Neurobiol, 2018, 55(6): 5154-5166. |
35 | Cadet JL, Brannock C, Krasnova IN, et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence[J]. Mol Psychiatry, 2017, 22(8): 1196-1204. |
36 | Eddy SR. Non-coding RNA genes and the modern RNA world[J]. Nat Rev Genet, 2001, 2(12): 919-929. |
37 | Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94. |
38 | Fu XD. Non-coding RNA: a new frontier in regulatory biology[J]. Natl Sci Rev, 2014, 1(2): 190-204. |
39 | Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465. |
40 | Zhu L, Zhu J, Liu Y, et al. Chronic methamphetamine regulates the expression of microRNAs and putative target genes in the nucleus accumbens of mice[J]. J Neurosci Res, 2015, 93(10): 1600-1610. |
41 | Du HY, Cao DN, Chen Y, et al. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: from controlled drug intake to escalated drug intake[J]. Neurosci Lett, 2016, 611: 21-27. |
42 | Bosch PJ, Benton MC, Macartney-Coxson D, et al. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats[J]. BMC Neurosci, 2015, 16: 43. |
43 | Zhang K, Wang Q, Jing X, et al. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder[J]. Sci Rep, 2016, 6: 35691. |
44 | Sim MS, Soga T, Pandy V, et al. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens[J]. Metab Brain Dis, 2017, 32(6): 1767-1783. |
45 | Li H, Li C, Zhou Y, et al. Expression of microRNAs in the serum exosomes of methamphetamine-dependent rats vs.ketamine-dependent rats[J]. Exp Ther Med, 2018, 15(4): 3369-3375. |
46 | Shi JJ, Cao DN, Liu HF, et al. Dorsolateral striatal miR-134 modulates excessive methamphetamine intake in self-administering rats[J]. Metab Brain Dis, 2019, 34(4): 1029-1041. |
47 | Meng Y, Zhang Y, Tregoubov V, et al. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton[J]. Rev Neurosci, 2003, 14(3): 233-240. |
48 | Du LF, Shen K, Bai Y, et al. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis[J]. Toxicol Lett, 2019, 301: 53-63. |
49 | Zhang Y, Shen K, Bai Y, et al. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: implications for methamphetamine-mediated neurotoxicity[J]. Autophagy, 2016, 12(9): 1538-1559. |
50 | Yu G, Song Y, Xie C, et al. MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: role of the target protein Peli1[J]. Toxicol Appl Pharmacol, 2019, 370: 145-153. |
51 | Zhao Y, Zhang K, Jiang H, et al. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder[J]. J Neuroimmune Pharmacol, 2016, 11(3): 542-548. |
52 | Gu WJ, Zhang C, Zhong Y, et al. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder[J]. Biomed Pharmacother, 2020, 125: 109918. |
53 | Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9): 1775-1789. |
54 | Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription[J]. BMC Biol, 2013, 11: 59. |
55 | Zhu L, Zhu J, Liu Y, et al. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse[J]. BMC Neurosci, 2015, 16: 18. |
56 | Xiong K, Long L, Zhang X, et al. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro [J]. Toxicol In Vitro, 2017, 44: 1-10. |
57 | Ip JY, Sone M, Nashiki C, et al. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine[J]. Sci Rep, 2016, 6: 27204. |
58 | Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. |
59 | Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction[J]. Neurosci Lett, 2019, 701: 146-153. |
[1] | 吴丹, 葛莉萍. 妊娠期糖尿病患者基因DNA甲基化的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1120-1124. |
[2] | 万淑君, 孔祥, 吕坤. 非编码RNA与糖尿病血管病变的关系[J]. 上海交通大学学报(医学版), 2021, 41(5): 665-670. |
[3] | 杨平原, 江海峰, 赵敏. 成瘾物质线索反应性及其神经机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(3): 376-379. |
[4] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
[5] | 姜梦迪, 张文. 糖尿病肾病中的组蛋白修饰与靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 103-107. |
[6] | 项思莹,李宁宁,徐一峰#,陈剑华#. 抗精神病药物诱发代谢综合征的DNA甲基化研究进展[J]. 上海交通大学学报(医学版), 2020, 40(12): 1656-1659. |
[7] | 蒋英英1,2,秦 星1,张建军1,陈万涛1. 长链非编码RNA COL11A1-208在口腔鳞状细胞癌中的表达及临床意义[J]. 上海交通大学学报(医学版), 2020, 40(10): 1334-1339. |
[8] | 徐 宁,周 甜,侯国俊,沈 南,唐元家. 长链非编码RNA AC073046.25在系统性红斑狼疮易感基因TET3表达调节中的作用[J]. 上海交通大学学报(医学版), 2020, 40(08): 1030-1035. |
[9] | 刘 洁,仇晓春. 乳腺肿瘤干细胞研究热点及趋势分析[J]. 上海交通大学学报(医学版), 2020, 40(07): 881-888. |
[10] | 建方方1,车晓霞2,冯炜炜1. 子宫内膜癌中长链非编码RNA表达谱的生物信息学分析[J]. 上海交通大学学报(医学版), 2020, 40(06): 768-775. |
[11] | 许晓敏,陈天真,江海峰. 重复经颅磁刺激调控物质成瘾相关神经环路的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(6): 655-. |
[12] | 孙 颖1,胡梅洁2,顾 玮1,李 健1,王 吉1,郑 雄1. lincRNA-BBOX1-2在胃癌组织中的表达及临床意义[J]. 上海交通大学学报(医学版), 2019, 39(10): 1178-. |
[13] | 付晓1,黄蕊1,范先群2,张赫2. 长链非编码RNA在眼内恶性肿瘤中的作用及其机制[J]. 上海交通大学学报(医学版), 2018, 38(6): 699-. |
[14] | 吕叶辉 1, 2, 3,李志宏 1,刘丽 1,黎世莹 2,李堃 1,杨智昉 1,陈忆九 2, 3. 人体脑组织福尔马林固定石蜡包埋样本中长链非编码RNA的提取及定量分析方法[J]. 上海交通大学学报(医学版), 2018, 38(4): 400-. |
[15] | 冯海忠. 组蛋白修饰与胶质瘤发生发展[J]. 上海交通大学学报(医学版), 2018, 38(1): 1-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||