1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
ZHENG R, ZHANG S, ZENG H, et al. Cancer incidence and mortality in china, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9.
|
3 |
BUTLER L M, PERONE Y, DEHAIRS J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention[J]. Adv Drug Deliv Rev, 2020, 159: 245-293.
|
4 |
MIGITA T, NARITA T, NOMURA K, et al. Atp citrate lyase: activation and therapeutic implications in non-small cell lung cancer[J]. Cancer Res, 2008, 68(20): 8547-8554.
|
5 |
HANAI J, DORO N, SASAKI A T, et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways[J]. J Cell Physiol, 2012, 227(4): 1709-1720.
|
6 |
WANG C, MENG X, ZHOU Y, et al. Long noncoding RNA CTD-2245E15.3 promotes anabolic enzymes ACC1 and PC to support non-small cell lung cancer growth[J]. Cancer Res, 2021, 81(13): 3509-3524.
|
7 |
SVENSSON R U, PARKER S J, EICHNER L J, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10): 1108-1119.
|
8 |
SCHCOLNIK-CABRERA A, CHÁVEZ-BLANCO A, DOMÍNGUEZ-GÓMEZ G, et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy[J]. Expert Opin Investig Drugs, 2018, 27(5): 475-489.
|
9 |
CHANG L, FANG S, CHEN Y, et al. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway[J]. Lipids Health Dis, 2019, 18(1): 118.
|
10 |
SHIMANO H, SATO R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13(12): 710-730.
|
11 |
LEE G, ZHENG Y, CHO S, et al. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling[J]. Cell, 2017, 171(7): 1545-1558.e18.
|
12 |
WANG J Q, WU Z X, YANG Y, et al. ATP-binding cassette (ABC) transporters in cancer: a review of recent updates[J]. J Evid Based Med, 2021, 14(3): 232-256.
|
13 |
JAROMI L, CSONGEI V, VESEL M, et al. KRAS and EGFR mutations differentially alter ABC drug transporter expression in cisplatin-resistant non-small cell lung cancer[J]. Int J Mol Sci, 2021, 22(10): 5384.
|
14 |
LI Z, KANG Y. Lipid metabolism fuels cancer's spread[J]. Cell Metab, 2017, 25(2): 228-230.
|
15 |
JIANG M, WU N, XU B, et al. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis[J]. Theranostics, 2019, 9(18): 5359-5373.
|
16 |
YANG S, KOBAYASHI S, SEKINO K, et al. Fatty acid-binding protein 5 controls lung tumor metastasis by regulating the maturation of natural killer cells in the lung[J]. FEBS Lett, 2021, 595(13): 1797-1805.
|
17 |
MA Y, TEMKIN S M, HAWKRIDGE A M, et al. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer[J]. Cancer Lett, 2018, 435: 92-100.
|
18 |
QU Q, ZENG F, LIU X, et al. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer[J]. Cell Death Dis, 2016, 7: e2226.
|
19 |
ZAUGG K, YAO Y, REILLY P T, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress[J]. Genes Dev, 2011, 25(10): 1041-1051.
|
20 |
FUJIWARA N, NAKAGAWA H, ENOOKU K, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity[J]. Gut, 2018, 67(8): 1493-1504.
|
21 |
WOHLHIETER C A, RICHARDS A L, UDDIN F, et al. Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer[J]. Cell Rep, 2020, 33(9): 108444.
|
22 |
HILVO M, DENKERT C, LEHTINEN L, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression[J]. Cancer Res, 2011, 71(9): 3236-3245.
|
23 |
NOTO A, DE VITIS C, PISANU M E, et al. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ[J]. Oncogene, 2017, 36(32): 4573-4584.
|
24 |
CRUZ A L S, BARRETO E A, FAZOLINI N P B, et al. Lipid droplets: platforms with multiple functions in cancer hallmarks[J]. Cell Death Dis, 2020, 11(2): 105.
|
25 |
PETAN T, JARC E, JUSOVIĆ M. Lipid droplets in cancer: guardians of fat in a stressful world[J]. Molecules, 2018, 23(8): E1941.
|
26 |
VEGLIA F, TYURIN V A, MOHAMMADYANI D, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer[J]. Nat Commun, 2017, 8(1): 2122.
|
27 |
LETTIERO B, INASU M, KIMBUNG S, et al. Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells[J]. Sci Rep, 2018, 8(1): 5462.
|
28 |
XU H, ZHOU S, TANG Q, et al. Cholesterol metabolism: new functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188394.
|
29 |
MERINO SALVADOR M, GÓMEZ DE CEDRÓN M, MORENO RUBIO J, et al. Lipid metabolism and lung cancer[J]. Crit Rev Oncol Hematol, 2017, 112: 31-40.
|
30 |
WU Y, SI R, TANG H, et al. Cholesterol reduces the sensitivity to platinum-based chemotherapy via upregulating ABCG2 in lung adenocarcinoma[J]. Biochem Biophys Res Commun, 2015, 457(4): 614-620.
|
31 |
MARIEN E, MEISTER M, MULEY T, et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles[J]. Int J Cancer, 2015, 137(7): 1539-1548.
|
32 |
WEI C, DONG X, LU H, et al. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 95.
|
33 |
LI P, LU M, SHI J, et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis[J]. Nat Immunol, 2020, 21(11): 1444-1455.
|
34 |
TOMIN T, FRITZ K, GINDLHUBER J, et al. Deletion of adipose triglyceride lipase links triacylglycerol accumulation to a more-aggressive phenotype in a549 lung carcinoma cells[J]. J Proteome Res, 2018, 17(4): 1415-1425.
|
35 |
AL-ZOUGHBI W, PICHLER M, GORKIEWICZ G, et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia[J]. Oncotarget, 2016, 7(23): 33832-33840.
|
36 |
HAN X. Lipidomics for studying metabolism[J]. Nat Rev Endocrinol, 2016, 12(11): 668-679.
|
37 |
CHENG C, RU P, GENG F, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth[J]. Cancer Cell, 2015, 28(5): 569-581.
|
38 |
MOLCKOVSKY A, SIU L L. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting[J]. J Hematol Oncol, 2008, 1: 20.
|
39 |
WANG J, LI Y. CD36 tango in cancer: signaling pathways and functions[J]. Theranostics, 2019, 9(17): 4893-4908.
|
40 |
ZAIDI N, ROYAUX I, SWINNEN J V, et al. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms[J]. Mol Cancer Ther, 2012, 11(9): 1925-1935.
|
41 |
HATZIVASSILIOU G, ZHAO F, BAUER D E, et al. ATP citrate lyase inhibition can suppress tumor cell growth[J]. Cancer Cell, 2005, 8(4): 311-321.
|
42 |
YANG L, ZHANG F, WANG X, et al. A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer[J]. Oncotarget, 2016, 7(34): 55543-55554.
|
43 |
SINGH S, KARTHIKEYAN C, MOORTHY N S H N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents[J]. Mini Rev Med Chem, 2020, 20(18): 1820-1837.
|
44 |
WANG S, WANG N, ZHENG Y, et al. Caveolin-1: an oxidative stress-related target for cancer prevention[J]. Oxid Med Cell Longev, 2017, 2017: 7454031.
|
45 |
HESS D, CHISHOLM J W, IGAL R A. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells[J]. PLoS One, 2010, 5(6): e11394.
|
46 |
PISANU M E, NOTO A, DE VITIS C, et al. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J]. Cancer Lett, 2017, 406: 93-104.
|
47 |
ZHANG J, SONG F, ZHAO X, et al. EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer[J]. Mol Cancer, 2017, 16(1): 127.
|
48 |
LONG J, ZHANG C J, ZHU N, et al. Lipid metabolism and carcinogenesis, cancer development[J]. Am J Cancer Res, 2018, 8(5): 778-791.
|
49 |
DAI C S, LEI L, LI B, et al. Involvement of the activation of Nrf2/HO-1, p38 MAPK signaling pathways and endoplasmic reticulum stress in furazolidone induced cytotoxicity and S phase arrest in human hepatocyte L02 cells: modulation of curcumin[J]. Toxicol Mech Methods, 2017, 27(3): 165-172.
|
50 |
GRUENBACHER G, THURNHER M. Mevalonate metabolism in immuno-oncology[J]. Front Immunol, 2017, 8: 1714.
|
51 |
VALLIANOU N G, KOSTANTINOU A, KOUGIAS M, et al. Statins and cancer[J]. Anticancer Agents Med Chem, 2014, 14(5): 706-712.
|
52 |
NGUYEN P A, CHANG C C, GALVIN C J, et al. Statins use and its impact in EGFR-TKIs resistance to prolong the survival of lung cancer patients: a Cancer registry cohort study in Taiwan[J]. Cancer Sci, 2020, 111(8): 2965-2973.
|
53 |
LIU Y, CHEN L, GONG Z, et al. Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells[J]. Oncotarget, 2015, 6(5): 3055-3070.
|
54 |
EMILSSON L, GARCÍA-ALBÉNIZ X, LOGAN R W, et al. Examining bias in studies of statin treatment and survival in patients with cancer[J]. JAMA Oncol, 2018, 4(1): 63-70.
|