上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (7): 952-957.doi: 10.3969/j.issn.1674-8115.2022.07.016
• 综述 • 上一篇
收稿日期:
2021-12-06
接受日期:
2022-06-23
出版日期:
2022-07-25
发布日期:
2022-07-25
通讯作者:
王振
E-mail:wangyang_sjtu@163.com;wangzhen@smhc.org.cn
作者简介:
王 杨(1997—),女,博士生;电子信箱:wangyang_sjtu@163.com。
基金资助:
WANG Yang(), CHENG Jiayue, WANG Zhen()
Received:
2021-12-06
Accepted:
2022-06-23
Online:
2022-07-25
Published:
2022-07-25
Contact:
WANG Zhen
E-mail:wangyang_sjtu@163.com;wangzhen@smhc.org.cn
Supported by:
摘要:
经颅直流电刺激(transcranial direct current stimulation,tDCS)是一种非侵入性脑刺激技术,被广泛用作调节神经系统功能、认知和行为的工具。越来越多的证据表明tDCS在神经精神疾病中有广泛的治疗前景。然而,关于该方法如何产生治疗效果,还有许多不确定的问题。该文重点介绍当前对于tDCS作用机制的相关研究,从即时效应着手,介绍电流改变局部膜电位变化的机制,并从Ca2+浓度、神经递质、突触可塑性等方面介绍后遗效应,分析tDCS在神经网络连通性方面产生的影响;回顾tDCS神经生理学方面的研究基础,探讨当前临床研究面临的困境,提出尚未解决的问题。
中图分类号:
王杨, 程佳月, 王振. 经颅直流电刺激作用机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 952-957.
WANG Yang, CHENG Jiayue, WANG Zhen. Progress in mechanism of transcranial direct current stimulation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 952-957.
1 | APARÍCIO L V M, GUARIENTI F, RAZZA L B, et al. A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials[J]. Brain Stimul, 2016, 9(5): 671-681. |
2 | LEFAUCHEUR J P, ANTAL A, AYACHE S S, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)[J]. Clin Neurophysiol, 2017, 128(1): 56-92. |
3 | YAVARI F, JAMIL A, MOSAYEBI SAMANI M, et al. Basic and functional effects of transcranial Electrical Stimulation (tES): an introduction[J]. Neurosci Biobehav Rev, 2018, 85: 81-92. |
4 | NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3): 633-639. |
5 | PHILIP N S, NELSON B G, FROHLICH F, et al. Low-intensity transcranial current stimulation in psychiatry[J]. Am J Psychiatry, 2017, 174(7): 628-639. |
6 | NITSCHE M A, FRICKE K, HENSCHKE U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. J Physiol, 2003, 553(Pt 1): 293-301. |
7 | NITSCHE M A, GRUNDEY J, LIEBETANZ D, et al. Catecholaminergic consolidation of motor cortical neuroplasticity in humans[J]. Cereb Cortex, 2004, 14(11): 1240-1245. |
8 | HILL A T, ROGASCH N C, FITZGERALD P B, et al. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions[J]. Neurosci Biobehav Rev, 2016, 64: 175-184. |
9 | NITSCHE M A, SEEBER A, FROMMANN K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. J Physiol, 2005, 568(Pt 1): 291-303. |
10 | LIEBETANZ D, NITSCHE M A, TERGAU F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(Pt 10): 2238-2247. |
11 | ANASTASSIOU C A, PERIN R, MARKRAM H, et al. Ephaptic coupling of cortical neurons[J]. Nat Neurosci, 2011, 14(2): 217-223. |
12 | BRUNONI A R, NITSCHE M A, BOLOGNINI N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions[J]. Brain Stimul, 2012, 5(3): 175-195. |
13 | BEDLACK R S Jr, WEI M, LOEW L M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth[J]. Neuron, 1992, 9(3): 393-403. |
14 | RAHMAN A, REATO D, ARLOTTI M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects[J]. J Physiol, 2013, 591(10): 2563-2578. |
15 | MCCAIG C D, RAJNICEK A M, SONG B, et al. Controlling cell behavior electrically: current views and future potential[J]. Physiol Rev, 2005, 85(3): 943-978. |
16 | MYCIELSKA M E, DJAMGOZ M B A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117(Pt 9): 1631-1639. |
17 | ESHRA A, SCHMIDT H, EILERS J, et al. Calcium dependence of neurotransmitter release at a high fidelity synapse[J]. Elife, 2021, 10: e70408. |
18 | CAMBIAGHI M, BUFFELLI M, MASIN L, et al. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus[J]. Brain Stimul, 2020, 13(3): 548-550. |
19 | BACHTIAR V, JOHNSTONE A, BERRINGTON A, et al. Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices[J]. J Neurosci, 2018, 38(33): 7327-7336. |
20 | ANTONENKO D, THIELSCHER A, SATURNINO G B, et al. Towards precise brain stimulation: is electric field simulation related to neuromodulation? [J]. Brain Stimul, 2019, 12(5): 1159-1168. |
21 | ANTONENKO D, SCHUBERT F, BOHM F, et al. tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults[J]. J Neurosci, 2017, 37(15): 4065-4073. |
22 | LENGU K, RYAN S, PELTIER S J, et al. Effects of high definition-transcranial direct current stimulation on local GABA and glutamate levels among older adults with and without mild cognitive impairment: an exploratory study[J]. J Alzheimers Dis, 2021, 84(3): 1091-1102. |
23 | ZHAO X J, DING J, PAN H J, et al. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats[J]. J Physiol, 2020, 598(17): 3727-3745. |
24 | HEIMRATH K, BRECHMANN A, BLOBEL-LÜER R, et al. Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study[J]. Sci Rep, 2020, 10(1): 20111. |
25 | MAGEE J C, GRIENBERGER C. Synaptic plasticity forms and functions[J]. Annu Rev Neurosci, 2020, 43: 95-117. |
26 | NICOLL R A. A brief history of long-term potentiation[J]. Neuron, 2017, 93(2): 281-290. |
27 | RANIERI F, PODDA M V, RICCARDI E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation[J]. J Neurophysiol, 2012, 107(7): 1868-1880. |
28 | FRASE L, MERTENS L, KRAHL A, et al. Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex[J]. Transl Psychiatry, 2021, 11(1): 17. |
29 | FRITSCH B, REIS J, MARTINOWICH K, et al. Direct Current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. |
30 | YU T H, WU Y J, CHIEN, et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor[J]. Neuropharmacology, 2019, 144: 358-367. |
31 | PARK H, POPESCU A, POO M M. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP[J]. Neuron, 2014, 84(5): 1009-1022. |
32 | KRONBERG G, RAHMAN A, SHARMA M, et al. Direct Current stimulation boosts hebbian plasticity in vitro[J]. Brain Stimul, 2020, 13(2): 287-301. |
33 | FOX K, STRYKER M. Integrating hebbian and homeostatic plasticity: introduction[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1715): 20160413. |
34 | LI J, PARK E, ZHONG L R, et al. Homeostatic synaptic plasticity as a metaplasticity mechanism: a molecular and cellular perspective[J]. Curr Opin Neurobiol, 2019, 54: 44-53. |
35 | ABRAHAM W C, BEAR M F. Metaplasticity: the plasticity of synaptic plasticity[J]. Trends Neurosci, 1996, 19(4): 126-130. |
36 | COOPER L N, BEAR M F. The BCM theory of synapse modification at 30: interaction of theory with experiment[J]. Nat Rev Neurosci, 2012, 13(11): 798-810. |
37 | CARVALHO S, BOGGIO P S, GONÇALVES Ó F, et al. Transcranial direct current stimulation based metaplasticity protocols in working memory[J]. Brain Stimul, 2015, 8(2): 289-294. |
38 | HURLEY R, MACHADO L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? [J]. Neurosci Biobehav Rev, 2017, 83: 155-159. |
39 | COSENTINO G, FIERRO B, PALADINO P, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex[J]. Eur J Neurosci, 2012, 35(1): 119-124. |
40 | BOCCI T, CALEO M, TOGNAZZI S, et al. Evidence for metaplasticity in the human visual cortex[J]. J Neural Transm (Vienna), 2014, 121(3): 221-231. |
41 | VINES B W, CERRUTI C, SCHLAUG G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation[J]. BMC Neurosci, 2008, 9: 103. |
42 | ANTAL A, POLANIA R, SCHMIDT-SAMOA C, et al. Transcranial direct current stimulation over the primary motor cortex during fMRI[J]. Neuroimage, 2011, 55(2): 590-596. |
43 | STAGG C J, BEST J G, STEPHENSON M C, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation[J]. J Neurosci, 2009, 29(16): 5202-5206. |
44 | MARSHALL L, MÖLLE M, HALLSCHMID M, et al. Transcranial direct current stimulation during sleep improves declarative memory[J]. J Neurosci, 2004, 24(44): 9985-9992. |
45 | ARIF Y, SPOONER R K, HEINRICHS-GRAHAM E, et al. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence[J]. J Physiol, 2021, 599(24): 5451-5463. |
46 | ARIF Y, SPOONER R K, WIESMAN A I, et al. Prefrontal multielectrode transcranial direct current stimulation modulates performance and neural activity serving visuospatial processing[J]. Cereb Cortex, 2020, 30(9): 4847-4857. |
47 | SPOONER R K, EASTMAN J A, REZICH M T, et al. High-definition transcranial direct current stimulation dissociates Fronto-visual Theta lateralization during visual selective attention[J]. J Physiol, 2020, 598(5): 987-998. |
48 | RUTTORF M, KRISTENSEN S, SCHAD L R, et al. Transcranial direct current stimulation alters functional network structure in humans: a graph theoretical analysis[J]. IEEE Trans Med Imaging, 2019, 38(12): 2829-2837. |
49 | LEAVER A M, GONZALEZ S, VASAVADA M, et al. Modulation of brain networks during MR-compatible transcranial direct current stimulation[J]. Neuroimage, 2022, 250: 118874. |
50 | GUO D L, LI J Y, ZHANG Y, et al. Transcranial direct current stimulation reconstructs diminished thalamocortical connectivity during prolonged resting wakefulness: a resting-state fMRI pilot study[J]. Brain Imaging Behav, 2020, 14(1): 278-288. |
51 | CHAN M M, HAN Y M. The effect of transcranial direct current stimulation in changing resting-state functional connectivity in patients with neurological disorders: a systematic review[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573520976832. |
52 | KEESER D, MEINDL T, BOR J, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI[J]. J Neurosci, 2011, 31(43): 15284-15293. |
53 | PEÑA-GÓMEZ C, SALA-LONCH R, JUNQUÉ C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI[J]. Brain Stimul, 2012, 5(3): 252-263. |
54 | YAQUB M A, HONG K S, ZAFAR A, et al. Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals[J]. Int J Neural Syst, 2022, 32(1): 2150050. |
55 | LIU A L, VÖRÖSLAKOS M, KRONBERG G, et al. Immediate neurophysiological effects of transcranial electrical stimulation[J]. Nat Commun, 2018, 9(1): 5092. |
56 | BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19. |
57 | HORVATH J C, CARTER O, FORTE J D. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)[J]. Front Syst Neurosci, 2014, 8: 2. |
[1] | 张晓琳, 张小云, 贺桂琴, 孔月, 周子凯. ATP敏感钾通道负向调节海马长时程增强的维持[J]. 上海交通大学学报(医学版), 2021, 41(2): 154-158. |
[2] | 沈琳洁, 黄雨欣, 王勇, 金华. 非侵入性脑刺激在抑郁障碍躯体症状治疗中的应用综述[J]. 上海交通大学学报(医学版), 2021, 41(11): 1535-1539. |
[3] | 钱诺诗, 洪武, 李春波. 经颅直流电刺激应用于儿童少年精神障碍治疗的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(10): 1366-1370. |
[4] | 程佳月,王振. 经颅直流电刺激治疗强迫症的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(9): 1089-. |
[5] | 王颖怡 1,陆燕华 1,耿瑞杰 1,程小燕 1,黄欣欣 1,吕钦谕 1,应启昂 2,易正辉 1. 碳酸锂对双相障碍患者氧化应激水平的影响[J]. 上海交通大学学报(医学版), 2019, 39(5): 494-. |
[6] | 黄雨欣,汤叶舟,赵雅娟,符 浩,王 勇,金 华. 经颅直流电刺激治疗单相和双相抑郁障碍的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(12): 1460-. |
[7] | 刘大为1,任 力2,闵 苏2. Ⅰ型促代谢性谷氨酸受体在小剂量氯胺酮保护抑郁大鼠电休克后学习记忆功能中的作用[J]. 上海交通大学学报(医学版), 2019, 39(11): 1248-. |
[8] | 付晓1,黄蕊1,范先群2,张赫2. 长链非编码RNA在眼内恶性肿瘤中的作用及其机制[J]. 上海交通大学学报(医学版), 2018, 38(6): 699-. |
[9] | 徐俊杰 1,杨然 1,杨芳景 1,焦鑫 1,刘颖斌 2. 吴茱萸碱抗肿瘤机制的研究进展[J]. 上海交通大学学报(医学版), 2018, 38(5): 578-. |
[10] | 黄悦琦,彭代辉. 钙/钙调蛋白依赖性蛋白激酶Ⅱ在抑郁症中的作用机制研究[J]. 上海交通大学学报(医学版), 2015, 35(9): 1389-. |
[11] | 李 进,张朝宝,邹 美,等. MicroRNA在抑郁症中作用的研究进展[J]. 上海交通大学学报(医学版), 2013, 33(10): 1399-. |
[12] | 管宏新, 肖云实. 皮层刺激治疗脑卒中的研究[J]. , 2010, 30(1): 108-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||