
上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (10): 1323-1329.doi: 10.3969/j.issn.1674-8115.2024.10.015
李钰1,2(
), 姜艺凡1, 童荣亮1, 陈迪宇1, 吴健1,2(
)
收稿日期:2024-03-14
接受日期:2024-06-04
出版日期:2024-10-28
发布日期:2024-10-28
通讯作者:
吴 健,电子信箱:drwujian@zju.edu.cn。作者简介:李 钰(1998—),男,硕士生;电子信箱:li_yu@zju.edu.cn。
基金资助:
LI Yu1,2(
), JIANG Yifan1, TONG Rongliang1, CHEN Diyu1, WU Jian1,2(
)
Received:2024-03-14
Accepted:2024-06-04
Online:2024-10-28
Published:2024-10-28
Contact:
WU Jian, E-mail: drwujian@zju.edu.cn.Supported by:摘要:
FOXM1(forkhead box M1)是FOX转录因子家族中的重要成员,其已被证实通过转录调控作用影响诸多肿瘤细胞演进。此外,FOXM1高表达与多种癌症不良预后相关,其参与调控基因表达,细胞增殖、侵袭、转移和凋亡等多种生物学过程。肿瘤细胞中的代谢重编程是肿瘤的重要特征,决定了肿瘤细胞的存活、生长和增殖。随着研究的不断深入,越来越多的证据提示FOXM1在调节肿瘤细胞增殖与代谢之间起“桥梁”作用,成为衔接肿瘤细胞生物行为学与代谢的枢纽。该文对FOXM1与肿瘤细胞代谢关系的研究进展进行综述,旨在为研发基于FOXM1的新型靶向药物提供理论参考。
中图分类号:
李钰, 姜艺凡, 童荣亮, 陈迪宇, 吴健. FOXM1与肿瘤代谢关系的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1323-1329.
LI Yu, JIANG Yifan, TONG Rongliang, CHEN Diyu, WU Jian. Research progress in the relationship between FOXM1 and neoplasm metabolism[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1323-1329.
| 1 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
| 2 | 关永俊, 余佳, 王卫星. 转录因子与肿瘤代谢重编程的研究进展[J]. 腹部外科, 2022, 35(2): 136-140. |
| GUAN Y J, YU J, WANG W X. Research advances of transcription factors and tumor metabolic reprogramming[J]. Journal of Abdominal Surgery, 2022, 35(2): 136-140. | |
| 3 | BACH D H, LONG N P, LUU T T, et al. The dominant role of forkhead box proteins in cancer[J]. Int J Mol Sci, 2018, 19(10): E3279. |
| 4 | LIAO G B, LI X Z, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer[J]. Cell Commun Signal, 2018, 16(1): 57. |
| 5 | ABDELJAOUED S, BETTAIEB I, NASRI M, et al. Overexpression of FOXM1 is a potential prognostic marker in male breast cancer[J]. Oncol Res Treat, 2017, 40(4): 167-172. |
| 6 | EGAWA M, YOSHIDA Y, OGURA S, et al. Increased expression of Forkhead box M1 transcription factor is associated with clinicopathological features and confers a poor prognosis in human hepatocellular carcinoma[J]. Hepatol Res, 2017, 47(11): 1196-1205. |
| 7 | ITO T, KOHASHI K, YAMADA Y, et al. Prognostic significance of forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in angiosarcoma[J]. J Cancer, 2016, 7(7): 823-830. |
| 8 | KONG F F, QU Z Q, YUAN H H, et al. Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer[J]. Oncol Rep, 2014, 31(6): 2660-2668. |
| 9 | TASSI R A, TODESCHINI P, SIEGEL E R, et al. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J]. J Exp Clin Cancer Res, 2017, 36(1): 63. |
| 10 | ZHANG H, ZHONG H, LI L, et al. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer[J]. Mol Med Rep, 2016, 13(3): 2696-2700. |
| 11 | GARBER K. Energy deregulation: licensing tumors to grow[J]. Science, 2006, 312(5777): 1158-1159. |
| 12 | CHEN J Q, RUSSO J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells[J]. Biochim Biophys Acta, 2012, 1826(2): 370-384. |
| 13 | CUI J, SHI M, XIE D, et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression[J]. Clin Cancer Res, 2014, 20(10): 2595-2606. |
| 14 | JIANG W, ZHOU F, LI N, et al. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression[J]. Int J Clin Exp Pathol, 2015, 8(6): 6756-6763. |
| 15 | SHANG R, PU M, LI Y, et al. FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression[J]. Oncol Rep, 2017, 37(4): 2261-2269. |
| 16 | WANG Y, YUN Y, WU B, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription[J]. Oncotarget, 2016, 7(30): 47985-47997. |
| 17 | KUAI X Y, LEI Z Y, LIU X S, et al. The interaction of GLUT1 and FOXM1 leads to a poor prognosis in colorectal cancer[J]. Anticancer Agents Med Chem, 2020, 20(8): 941-950. |
| 18 | WANG K, DAI X, YU A, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression[J]. J Exp Clin Cancer Res, 2022, 41(1): 289. |
| 19 | ZHANG W, ZHANG X, HUANG S, et al. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis[J]. Mol Oncol, 2021, 15(5): 1466-1485. |
| 20 | JIANG Z P, HU H, HU W L, et al. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer[J]. Cancer Cell Int, 2021, 21(1): 596. |
| 21 | CHENG Y, SUN F M, THORNTON K, et al. FOXM1 regulates glycolysis and energy production in multiple myeloma[J]. Oncogene, 2022, 41: 3899-3911. |
| 22 | HAO Y, LI D, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data[J]. BMC Bioinformatics, 2019, 20(suppl 7): 195. |
| 23 | EZZEDDINI R, TAGHIKHANI M, SOMI M H, et al. Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma[J]. Life Sci, 2019, 224: 169-176. |
| 24 | JIA J, CHE L, CIGLIANO A, et al. Pivotal role of fatty acid synthase in c-MYC driven hepatocarcinogenesis[J]. Int J Mol Sci, 2020, 21(22): E8467. |
| 25 | ASSAILY W, RUBINGER D A, WHEATON K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J]. Mol Cell, 2011, 44(3): 491-501. |
| 26 | FAJAS L, LANDSBERG R L, HUSS-GARCIA Y, et al. E2Fs regulate adipocyte differentiation[J]. Dev Cell, 2002, 3(1): 39-49. |
| 27 | DE OLANO N, KOO C Y, MONTEIRO L J, et al. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment[J]. Mol Cancer Res, 2012, 10(9): 1189-1202. |
| 28 | GUAITA-ESTERUELAS S, BOSQUET A, SAAVEDRA P, et al. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins[J]. Mol Carcinog, 2017, 56(1): 208-217. |
| 29 | ZHANG X, HUANG C, YUAN Y, et al. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells[J]. Free Radic Biol Med, 2022, 179: 213-228. |
| 30 | CALDWELL S A, JACKSON S R, SHAHRIARI K S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1[J]. Oncogene, 2010, 29(19): 2831-2842. |
| 31 | LYNCH T P, FERRER C M, JACKSON S R, et al. Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis [J]. J Biol Chem, 2012, 287(14): 11070-11081. |
| 32 | FERRER C M, LU T Y, BACIGALUPA Z A, et al. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway[J]. Oncogene, 2017, 36(4): 559-569. |
| 33 | PARK H J, CARR J R, WANG Z, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis[J]. EMBO J, 2009, 28(19): 2908-2918. |
| 34 | HALASI M, PANDIT B, WANG M, et al. Combination of oxidative stress and FOXM1 inhibitors induces apoptosis in cancer cells and inhibits xenograft tumor growth[J]. Am J Pathol, 2013, 183(1): 257-265. |
| 35 | NEWICK K, CUNNIFF B, PRESTON K, et al. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells[J]. PLoS One, 2012, 7(6): e39404. |
| 36 | XIA L M, HUANG W J, WANG B, et al. Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1[J]. J Cell Biochem, 2009, 106(2): 247-256. |
| 37 | WEI W S, WANG N, DENG M H, et al. LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis[J]. Redox Biol, 2021, 48: 102201. |
| 38 | YUNG M M, CHAN D W, LIU V W, et al. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade[J]. BMC Cancer, 2013, 13: 327. |
| 39 | HU C, LIU D, ZHANG Y, et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells[J]. Oncogene, 2014, 33(22): 2888-2897. |
| 40 | ECKERS J C, KALEN A L, SARSOUR E H, et al. Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells[J]. Radiat Res, 2014, 182(4): 420-429. |
| 41 | PETROVIC V, COSTA R H, LAU L F, et al. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin[J]. Cancer Biol Ther, 2010, 9(12): 1008-1016. |
| 42 | DONG G Z, JEONG J H, LEE Y I, et al. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway[J]. Arch Pharmacal Res, 2017, 40(4): 509-517. |
| 43 | HALASI M, HITCHINSON B, SHAH B N, et al. Honokiol is a FOXM1 antagonist[J]. Cell Death Dis, 2018, 9: 84. |
| 44 | JIANG L, CAO X C, CAO J G, et al. Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a[J]. Oncol Lett, 2013, 5(5): 1605-1610. |
| 45 | BI Z, LIU W, DING R, et al. A novel peptide, 9R-P201, strongly inhibits the viability, proliferation and migration of liver cancer HepG2 cells and induces apoptosis by down-regulation of FoxM1 expression[J]. Eur J Pharmacol, 2017, 796: 175-189. |
| 46 | XIANG Q, TAN G X, JIANG X, et al. Suppression of FOXM1 transcriptional activities via a single-stranded DNA aptamer generated by SELEX[J]. Sci Rep, 2017, 7: 45377. |
| 47 | PANDIT B, GARTEL A L. FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy[J]. Cell Cycle, 2011, 10(19): 3269-3273. |
| 48 | HEGDE N S, SANDERS D A, RODRIGUEZ R, et al. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton[J]. Nat Chem, 2011, 3: 725-731. |
| 49 | GARTEL A L. Thiazole antibiotics siomycin a and thiostrepton inhibit the transcriptional activity of FOXM1[J]. Front Oncol, 2013, 3: 150. |
| 50 | GORMALLY M V, DEXHEIMER T S, MARSICO G, et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition[J]. Nat Commun, 2014, 5: 5165. |
| 51 | SHUKLA S, MILEWSKI D, PRADHAN A, et al. The FOXM1 inhibitor RCM-1 decreases carcinogenesis and nuclear β-catenin[J]. Mol Cancer Ther, 2019, 18(7): 1217-1229. |
| 52 | ZIEGLER Y, LAWS M J, SANABRIA GUILLEN V, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds[J]. NPJ Breast Cancer, 2019, 5: 45. |
| 53 | TEH M T. FOXM1 wins molecule of the year 2010 [EB/OL]. [2011-02-20]. http://ismcbbpr.synthasite.com/molyearnews/foxm1-wins-molecule-of-the-year-2010. |
| [1] | 杨小雨, 黄蕊, 吴以加, 张哲, 房燕, 沈键锋. PIKfyve抑制剂靶向治疗STING通路缺陷黑色素瘤的机制研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1126-1137. |
| [2] | 朱子俊, 钱逸斐, 李倩玉, 李松玲, 覃雯莉, 刘艳丰. 后期促进复合体亚基10调控PI3K-AKT-mTOR通路促进肝细胞癌进展的研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1171-1182. |
| [3] | 杨全军, 柏丁源, 周雨萱, 白露, 郭澄. 异柠檬酸脱氢酶1突变介导D-2-羟基戊二酸代谢重编程在肿瘤免疫调控中的作用及相关药物研发进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1239-1248. |
| [4] | 黄昕, 刘家辉, 叶敬文, 钱文莉, 许万星, 王琳. 基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1009-1016. |
| [5] | 木尔扎特·艾麦提, 张业骞, 刘涛, 白龙, 张浩宇, 倪博, 关玉静, 王书昌, 顾佳毅, 朱纯超, 夏翔, 张子臻. 机器人与腹腔镜辅助近端胃切除联合双肌瓣吻合治疗早期胃上部癌的近期效果对比[J]. 上海交通大学学报(医学版), 2025, 45(7): 874-882. |
| [6] | 赛提尔古丽·克然木, 钱蕾, 丁思怡, 哈娜提·马合力木汗, 杨雪儿, 贾浩. 精氨酸代谢调控间充质干细胞功能的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 910-915. |
| [7] | 宋静, 姜烁, 万方煜, 李娟, 艾迪娜·木合塔, 闵新颖, 周婧琪. 膳食模式干预对代谢相关脂肪性肝病的影响与机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 926-933. |
| [8] | 黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 792-799. |
| [9] | 汤开然, 冯成领, 韩邦旻. 基于单细胞测序与转录组测序构建M2巨噬细胞基因相关的前列腺癌预后模型[J]. 上海交通大学学报(医学版), 2025, 45(5): 549-561. |
| [10] | 张钲佳, 李小敏, 周鑫, 马海荣, 艾松涛. 高阶磁共振功能成像评估骨与软组织肿瘤价值初探[J]. 上海交通大学学报(医学版), 2025, 45(5): 585-596. |
| [11] | 黄周轩, 邵静波. 慢性原发性免疫性血小板减少症的治疗研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 508-516. |
| [12] | 邹沛辰, 刘鸿宇, 阿衣娜扎尔·艾合买提, 朱亮, 唐亚斌, 雷绘敏. 索托拉西布获得性耐药肺癌细胞的代谢轮廓分析[J]. 上海交通大学学报(医学版), 2025, 45(2): 138-149. |
| [13] | 张博源, 姚志荣. 紫外线诱导的DNA损伤促进皮肤恶性肿瘤发生的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(2): 228-232. |
| [14] | PANDIT Roshan, 卢君瑶, 何立珩, 包玉洁, 季萍, 陈颖盈, 许洁, 王颖. 肿瘤坏死因子-α在新型冠状病毒感染合并肾损伤中的作用[J]. 上海交通大学学报(医学版), 2025, 45(1): 1-10. |
| [15] | 陈怀煌, 左武, 卞迁. CTCF调控小鼠AML12肝细胞系脂质代谢功能与基因表达[J]. 上海交通大学学报(医学版), 2024, 44(9): 1069-1082. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||