1 |
ZHAO X, WU Q R, GONG X Q, et al. Osteosarcoma: a review of current and future therapeutic approaches[J]. Biomed Eng Online, 2021, 20(1): 24.
|
2 |
BERNTHAL N M, FEDERMAN N, EILBER F R, et al. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma[J]. Cancer, 2012, 118(23): 5888-5893.
|
3 |
XU Y, SHI F Q, ZHANG Y T, et al. Twenty-year outcome of prevalence, incidence, mortality and survival rate in patients with malignant bone tumors[J]. Int J Cancer, 2024, 154(2): 226-240.
|
4 |
MOUKENGUE B, LALLIER M, MARCHANDET L, et al. Origin and therapies of osteosarcoma[J]. Cancers, 2022, 14(14): 3503.
|
5 |
ZHU T Y, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550.
|
6 |
ZHOU Y, YANG D, YANG Q C, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nat Commun, 2020, 11(1): 6322.
|
7 |
CERSOSIMO F, LONARDI S, BERNARDINI G, et al. Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy[J]. Int J Mol Sci, 2020, 21(15): 5207.
|
8 |
刘净峰, 徐鸿锋, 刘巍峰. 骨肉瘤驱动基因与免疫微环境及靶向治疗的研究进展[J]. 中国骨与关节杂志, 2024, 13(5): 390-395.
|
|
LIU J F, XU H F, LIU W F. Research advances on osteosarcoma driver genes, immune microenvironment, and targeted therapy[J]. Chinese Journal of Bone and Joint, 2024, 13(5): 390-395.
|
9 |
HUANG Q S, LIANG X, REN T T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol, 2021, 44(3): 525-539.
|
10 |
TIAN H L, CAO J J, LI B W, et al. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment[J]. Bone Res, 2023, 11(1): 11.
|
11 |
HOU C H, LU M, LEI Z X, et al. HMGB1 positive feedback loop between cancer cells and tumor-associated macrophages promotes osteosarcoma migration and invasion[J]. Lab Invest, 2023, 103(5): 100054.
|
12 |
WOLF-DENNEN K, GORDON N, KLEINERMAN E S. Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions[J]. Oncoimmunology, 2020, 9(1): 1747677.
|
13 |
CHENG Z H, WANG L Q, WU C H, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through Tim-3[J]. Arch Med Res, 2021, 52(2): 200-210.
|
14 |
ANAND N, PEH K H, KOLESAR J M. Macrophage repolarization as a therapeutic strategy for osteosarcoma[J]. Int J Mol Sci, 2023, 24(3): 2858.
|
15 |
RAGGI C, MOUSA H S, CORRENTI M, et al. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies[J]. Oncogene, 2016, 35(6): 671-682.
|
16 |
LIN J T, XU A K, JIN J K, et al. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression[J]. Oncoimmunology, 2022, 11(1): 2024941.
|
17 |
KALLURI R, LEBLEU V S. The biology,function,and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
|
18 |
ZHANG L, YU D H. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468.
|
19 |
WANG J, ZHANG H L, SUN X, et al. Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients[J]. J Nanobiotechnology, 2020, 18(1): 151.
|
20 |
PU F F, CHEN F X, ZHANG Z C, et al. Information transfer and biological significance of neoplastic exosomes in the tumor microenvironment of osteosarcoma[J]. Onco Targets Ther, 2020, 13: 8931-8940.
|
21 |
TANG J X, HE J Y, FENG C Y, et al. Exosomal miRNAs in osteosarcoma: biogenesis and biological functions[J]. Front Pharmacol, 2022, 13: 902049.
|
22 |
DYSON K A, STOVER B D, GRIPPIN A, et al. Emerging trends in immunotherapy for pediatric sarcomas[J]. J Hematol Oncol, 2019, 12(1): 78.
|
23 |
ZHONG R, LING X, CAO S, et al. Safety and efficacy of dendritic cell-based immunotherapy (DCVAC/LuCa) combined with carboplatin/pemetrexed for patients with advanced non-squamous non-small-cell lung cancer without oncogenic drivers[J]. ESMO Open, 2022, 7(1): 100334.
|
24 |
YU J F, SUN H, CAO W J, et al. Research progress on dendritic cell vaccines in cancer immunotherapy[J]. Exp Hematol Oncol, 2022, 11(1): 3.
|
25 |
ASSI T, WATSON S, SAMRA B, et al. Targeting the VEGF pathway in osteosarcoma[J]. Cells, 2021, 10(5): 1240.
|
26 |
DUFFAUD F, MIR O, BOUDOU-ROUQUETTE P, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study[J]. Lancet Oncol, 2019, 20(1): 120-133.
|
27 |
DAVIS L E, BOLEJACK V, RYAN C W, et al. Randomized double-blind phase Ⅱ study of regorafenib in patients with metastatic osteosarcoma[J]. J Clin Oncol, 2019, 37(16): 1424-1431.
|
28 |
DUFFAUD F, BLAY J Y, LE CESNE A, et al. Regorafenib in patients with advanced Ewing sarcoma: results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre Phase Ⅱ study[J]. Br J Cancer, 2023, 129(12): 1940-1948.
|
29 |
TIAN Z C, WANG J Q, GE H. Apatinib ameliorates doxorubicin-induced migration and cancer stemness of osteosarcoma cells by inhibiting Sox2 via STAT3 signalling[J]. J Orthop Translat, 2020, 22: 132-141.
|
30 |
LIU K S, REN T T, HUANG Y, et al. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma[J]. Cell Death Dis, 2017, 8(8): e3015.
|
31 |
XIE L, XU J, SUN X, et al. Apatinib for advanced osteosarcoma after failure of standard multimodal therapy: an open label phase Ⅱ clinical trial[J]. Oncologist, 2019, 24(7): e542-e550.
|
32 |
ZHANG X, PAN Q Z, PENG R Q, et al. A phase Ⅱ study of surufatinib in patients with osteosarcoma and soft tissue sarcoma who have experienced treatment failure with standard chemotherapy[J]. J Clin Oncol, 2023, 41(16_suppl): e23540.
|
33 |
YU L F, FAN G T, WANG Q Y, et al. In vivo self-assembly and delivery of VEGFR2 siRNA-encapsulated small extracellular vesicles for lung metastatic osteosarcoma therapy[J]. Cell Death Dis, 2023, 14(9): 626.
|
34 |
HAVEL J J, CHOWELL D, CHAN T A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019, 19(3): 133-150.
|
35 |
YI M, NIU M K, XU L P, et al. Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol, 2021, 14(1): 10.
|
36 |
HASHIMOTO K, NISHIMURA S, AKAGI M. Characterization of PD-1/PD-L1 immune checkpoint expression in osteosarcoma[J]. Diagnostics, 2020, 10(8): 528.
|
37 |
TODA Y, KOHASHI K, YAMADA Y, et al. PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2607-2620.
|
38 |
DHUPKAR P, GORDON N, STEWART J, et al. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases[J]. Cancer Med, 2018, 7(6): 2654-2664.
|
39 |
ZHANG M, CHEN L, LI Y, et al. PD‑L1/PD‑1 axis serves an important role in natural killer cell‑induced cytotoxicity in osteosarcoma[J]. Oncol Rep, 2019, 42(5): 2049-2056.
|
40 |
BOYE K, LONGHI A, GUREN T, et al. Pembrolizumab in advanced osteosarcoma: results of a single-arm, open-label, phase 2 trial[J]. Cancer Immunol Immunother, 2021, 70(9): 2617-2624.
|
41 |
WEN Y, TANG F, TU C Q, et al. Immune checkpoints in osteosarcoma: recent advances and therapeutic potential[J]. Cancer Lett, 2022, 547: 215887.
|
42 |
XIE L, XU J, SUN X, et al. Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial[J]. J Immunother Cancer, 2020, 8(1): e000798.
|
43 |
SZNOL M, MELERO I. Revisiting anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer immunotherapy[J]. Ann Oncol, 2021, 32(3): 295-297.
|
44 |
ROY D, GILMOUR C, PATNAIK S, et al. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors[J]. Front Immunol, 2023, 14: 1264327.
|
45 |
BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249.
|
46 |
YUAN J H, JIA J Y, WU T L, et al. Long intergenic non-coding RNA DIO3OS promotes osteosarcoma metastasis via activation of the TGF-β signaling pathway: a potential diagnostic and immunotherapeutic target for osteosarcoma[J]. Cancer Cell Int, 2023, 23(1): 215.
|
47 |
XIE L, CHEN C L, LIANG X, et al. Expression and clinical significance of various checkpoint molecules in advanced osteosarcoma: possibilities for novel immunotherapy[J]. Orthop Surg, 2023, 15(3): 829-838.
|
48 |
ZHANG Y M, GAN W Y, RU N, et al. Comprehensive multi-omics analysis reveals m7G-related signature for evaluating prognosis and immunotherapy efficacy in osteosarcoma[J]. J Bone Oncol, 2023, 40: 100481.
|
49 |
SCHULTZ L. Chimeric antigen receptor T cell therapy for pediatric B-ALL: narrowing the gap between early and long-term outcomes[J]. Front Immunol, 2020, 11: 1985.
|
50 |
LI S Z, ZHANG H, SHANG G N. Current status and future challenges of CAR-T cell therapy for osteosarcoma[J]. Front Immunol, 2023, 14: 1290762.
|
51 |
CORTI C, VENETIS K, SAJJADI E, et al. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress[J]. Expert Opin Investig Drugs, 2022, 31(6): 593-605.
|
52 |
KACZANOWSKA S, MURTY T, ALIMADADI A, et al. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy[J]. Cancer Cell, 2024, 42(1): 35-51.e8.
|
53 |
ZHU J W, SIMAYI N, WAN R X, et al. CAR T targets and microenvironmental barriers of osteosarcoma[J]. Cytotherapy, 2022, 24(6): 567-576.
|
54 |
MENSALI N, KÖKSAL H, JOAQUINA S, et al. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma[J]. Nat Commun, 2023, 14(1): 3375.
|
55 |
MOONAT H, HUANG G X, DHUPKAR P, et al. Combination of interleukin-11Rα chimeric antigen receptor T-cells and programmed death-1 blockade as an approach to targeting osteosarcoma cells in vitro[J]. Cancer Transl Med, 2017, 3(4): 139.
|
56 |
LUSSIER D M, JOHNSON J L, HINGORANI P, et al. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21.
|
57 |
D'ANGELO S P, MAHONEY M R, VAN TINE B A, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials[J]. Lancet Oncol, 2018, 19(3): 416-426.
|
58 |
KAWANO M, ITONAGA I, IWASAKI T, et al. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma[J]. Oncol Rep, 2013, 29(3): 1001-1006.
|
59 |
KRUPKA C, KUFER P, KISCHEL R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism[J]. Leukemia, 2016, 30(2): 484-491.
|
60 |
SUN C, DOTTI G, SAVOLDO B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies[J]. Blood, 2016, 127(26): 3350-3359.
|
61 |
WANG Z, LI B H, REN Y Q, et al. T-cell-based immunotherapy for osteosarcoma: challenges and opportunities[J]. Front Immunol, 2016, 7: 353.
|
62 |
CHAPUIS A G, ROBERTS I M, THOMPSON J A, et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression[J]. J Clin Oncol, 2016, 34(31): 3787-3795.
|
63 |
CURRAN M A, MONTALVO W, YAGITA H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280.
|
64 |
YU A L, GILMAN A L, OZKAYNAK M F, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma[J]. N Engl J Med, 2010, 363(14): 1324-1334.
|
65 |
ZHU W H, MAO X Z, WANG W C, et al. Anti-ganglioside GD2 monoclonal antibody synergizes with cisplatin to induce endoplasmic reticulum-associated apoptosis in osteosarcoma cells[J]. Pharmazie, 2018, 73(2): 80-86.
|
66 |
THANINDRATARN P, DEAN D C, NELSON S D, et al. Advances in immune checkpoint inhibitors for bone sarcoma therapy[J]. J Bone Oncol, 2019, 15: 100221.
|
67 |
YAMADA N, HATA M, OHYAMA H, et al. Immunotherapy with interleukin-18 in combination with preoperative chemotherapy with ifosfamide effectively inhibits postoperative progression of pulmonary metastases in a mouse osteosarcoma model[J]. Tumour Biol, 2009, 30(4): 176-184.
|
68 |
HE X J, LIN H Q, YUAN L, et al. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice[J]. Cancer Biol Ther, 2017, 18(2): 94-100.
|
69 |
KAWANO M, TANAKA K, ITONAGA I, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma[J]. Oncol Lett, 2016, 11(3): 2169-2175.
|