1 |
FU X R, LIU G, HALIM A, et al. Mesenchymal stem cell migration and tissue repair[J]. Cells, 2019, 8(8): 784.
|
2 |
SON C, CHOI M S, PARK J C. Different responsiveness of alveolar bone and long bone to epithelial-mesenchymal interaction-related factor[J]. JBMR Plus, 2020, 4(8): e10382.
|
3 |
WANG D, GILBERT J R, ZHANG X, et al. Calvarial versus long bone: implications for tailoring skeletal tissue engineering[J]. Tissue Eng Part B Rev, 2020, 26(1): 46-63.
|
4 |
SOARES A P, FISCHER H, AYDIN S, et al. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration[J]. Front Physiol, 2023, 14: 1152301.
|
5 |
JEYARAMAN M, VERMA T, JEYARAMAN N, et al. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells?[J]. World J Methodol, 2023, 13(2): 10-17.
|
6 |
HUANG X Y, LOU Y X, DUAN Y H, et al. Biomaterial scaffolds in maxillofacial bone tissue engineering: a review of recent advances[J]. Bioact Mater, 2024, 33: 129-156.
|
7 |
CAPUTO M, PIGNI S, AGOSTI E, et al. Regulation of GH and GH signaling by nutrients[J]. Cells, 2021, 10(6): 1376.
|
8 |
KNUDSEN T B, PIERRO J D, BAKER N C. Retinoid signaling in skeletal development: scoping the system for predictive toxicology[J]. Reprod Toxicol, 2021, 99: 109-130.
|
9 |
NALLAMSHETTY S, WANG H, RHEE E J, et al. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo[J]. PLoS One, 2013, 8(8): e71307.
|
10 |
SALTZMAN M D, KING E C. Central physeal arrests as a manifestation of hypervitaminosis A[J]. J Pediatr Orthop, 2007, 27(3): 351-353.
|
11 |
LIND T, LIND P M, JACOBSON A, et al. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats[J]. Bone, 2011, 48(3): 496-506.
|
12 |
SKALNY A V, ASCHNER M, TSATSAKIS A, et al. Role of vitamins beyond vitamin D3 in bone health and osteoporosis (Review)[J]. Int J Mol Med, 2024, 53(1): 9.
|
13 |
XU H Y, ZHOU S R, QU R Y, et al. Icariin prevents oestrogen deficiency-induced alveolar bone loss through promoting osteogenesis via STAT3[J]. Cell Prolif, 2020, 53(2): e12743.
|
14 |
HONG Y Y, XU H Y, YANG Y L, et al. Isolation and cultivation of mandibular bone marrow mesenchymal stem cells in rats[J]. J Vis Exp, 2020, (162).DOI: 10.3791/61532.
|
15 |
WANG S Y, MA Y N, WANG X D, et al. IL-17A increases multiple myeloma cell viability by positively regulating syk expression[J]. Transl Oncol, 2019, 12(8): 1086-1091.
|
16 |
JIN A, HONG Y, YANG Y, et al. FOXO3 mediates tooth movement by regulating force-induced osteogenesis[J]. J Dent Res, 2022, 101(2): 196-205.
|
17 |
JIN A, XU H, GAO X, et al. ScRNA-seq reveals a distinct osteogenic progenitor of alveolar bone[J]. J Dent Res, 2023, 102(6): 645-655.
|
18 |
ZHOU S R, DAI Q G, HUANG X R, et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis[J]. Nat Commun, 2021, 12(1): 6891.
|
19 |
GONG X Y, SUN S Y, YANG Y L, et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement[J]. J Bone Miner Res, 2023, 38(1): 214-227.
|
20 |
GUO J X, YAO H, LI X, et al. Advanced Hydrogel systems for mandibular reconstruction[J]. Bioact Mater, 2023, 21: 175-193.
|
21 |
AGHALOO T L, CHAICHANASAKUL T, BEZOUGLAIA O, et al. Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010, 89(11): 1293-1298.
|
22 |
NING K T, YANG B Q, CHEN M, et al. Functional heterogeneity of bone marrow mesenchymal stem cell subpopulations in physiology and pathology[J]. Int J Mol Sci, 2022, 23(19): 11928.
|
23 |
李天琪, 孟祥博, 时权, 等. 颌骨骨髓间充质干细胞生物学特性及其影响因素的研究进展[J]. 中华口腔医学杂志, 2022, 57(1): 107-112.
|
|
LI T Q, MENG X B, SHI Q, et al. Research progress in biological characteristics and influencing factors of jaw bone marrow mesenchymal stem cell[J]. Chinese Journal of Stomatolopy, 2022, 57(1): 107-112.
|
24 |
SRINIVASAN A, TEO N, POON K J, et al. Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow[J]. ACS Biomater Sci Eng, 2021, 7(1): 207-221.
|
25 |
WILLIAMS A L, BOHNSACK B L. What′s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development[J]. Genesis, 2019, 57(7/8): e23308.
|
26 |
PETRELLI B, BENDELAC L, HICKS G G, et al. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder[J]. Genesis, 2019, 57(1): e23278.
|
27 |
HAYES K C, COUSINS R J. Vitamin A deficiency and bone growth[J]. Calcif Tissue Res, 1970, 6(1): 120-132.
|
28 |
ABADIE R B, STAPLES A A, LAUCK L V, et al. Vitamin A-mediated birth defects: a narrative review[J]. Cureus, 2023, 15(12): e50513.
|
29 |
TIMBERLAKE A T, MCGEE S, ALLINGTON G, et al. De novo variants implicate chromatin modification, transcriptional regulation, and retinoic acid signaling in syndromic craniosynostosis[J]. Am J Hum Genet, 2023, 110(5): 846-862.
|
30 |
OHISHI K, NISHIKAWA S, NAGATA T, et al. Physiological concentrations of retinoic acid suppress the osteoblastic differentiation of fetal rat calvaria cells in vitro[J]. Eur J Endocrinol, 1995, 133(3): 335-341.
|
31 |
YEE M M F, CHIN K Y, IMA-NIRWANA S, et al. Vitamin A and bone health: a review on current evidence[J]. Molecules, 2021, 26(6): 1757.
|
32 |
LIND T, SUNDQVIST A, HU L J, et al. Vitamin A is a negative regulator of osteoblast mineralization[J]. PLoS One, 2013, 8(12): e82388.
|
33 |
ALLOISIO G, CIACCIO C, FASCIGLIONE G F, et al. Effects of extracellular osteoanabolic agents on the endogenous response of osteoblastic cells[J]. Cells, 2021, 10(9): 2383.
|
34 |
MATTINZOLI D, MESSA P, CORBELLI A, et al. A novel model of in vitro osteocytogenesis induced by retinoic acid treatment[J]. Eur Cell Mater, 2012, 24: 403-425.
|
35 |
NI X L, HU G H, CAI X. The success and the challenge of all-trans retinoic acid in the treatment of cancer[J]. Crit Rev Food Sci Nutr, 2019, 59(sup1): S71-S80.
|