
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (5): 639-645.doi: 10.3969/j.issn.1674-8115.2025.05.013
收稿日期:2024-07-09
接受日期:2024-10-28
出版日期:2025-05-28
发布日期:2025-05-28
通讯作者:
陈剑华,主任医师,博士;电子信箱:jianhua.chen@smhc.org.cn。作者简介:邢雨茜(1999—),女,硕士生;电子信箱:yuxi004@sjtu.edu.cn。
基金资助:
XING Yuxi, CHENG Ying, CHEN Jianhua(
)
Received:2024-07-09
Accepted:2024-10-28
Online:2025-05-28
Published:2025-05-28
Contact:
CHEN Jianhua, E-mail: jianhua.chen@smhc.org.cn.Supported by:摘要:
精神分裂症的诊断通常依赖于临床症状的评估,而客观生物标志物的寻找对于疾病的诊断和治疗尤为重要。由于视网膜可以反映中枢神经系统的状态,越来越多的研究开始关注神经精神疾病的视网膜特异性改变。该综述总结了近年精神分裂症患者视网膜神经层、血管特征及电生理特征的相关研究,发现精神分裂症患者常表现出视网膜神经节细胞-内丛状层、视网膜神经纤维层变薄,且视网膜各层的变化情况在精神分裂症疾病的不同阶段表现不一。对眼底血管的研究提示,精神分裂症患者存在视网膜血管密度和微血管形态结构改变。视网膜电图的相关研究提示,精神分裂症急性期患者多表现出视锥细胞a波振幅降低,而遗传高风险人群常表现出视杆细胞b波振幅的降低趋势。但目前精神分裂症的视网膜相关研究在研究方向上多着眼于临床表现,相关机制研究较少,且研究结果并不一致。该综述尝试针对视网膜神经层、微循环、电生理改变,探讨包括逆行跨突触变性假说、神经递质紊乱、遗传、脑结构改变、代谢等在内的潜在病理生理机制,以期为精神分裂症的病理生理机制及客观生物标志物的寻找提供新的思路。
中图分类号:
邢雨茜, 程影, 陈剑华. 精神分裂症视网膜特征及潜在机制的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 639-645.
XING Yuxi, CHENG Ying, CHEN Jianhua. Progress in retinal features and underlying mechanisms in schizophrenia[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 639-645.
| 1 | WHITEFORD H A, DEGENHARDT L, REHM J, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010[J]. Lancet, 2013, 382(9904): 1575-1586. |
| 2 | SOLMI M, SEITIDIS G, MAVRIDIS D, et al. Incidence, prevalence, and global burden of schizophrenia-data, with critical appraisal, from the Global Burden of Disease (GBD) 2019[J]. Mol Psychiatry, 2023, 28(12): 5319-5327. |
| 3 | SVENDSEN A M, KESSING L V, MUNKHOLM K, et al. Is there an association between subjective and objective measures of cognitive function in patients with affective disorders?[J]. Nord J Psychiatry, 2012, 66(4): 248-253. |
| 4 | PATEL S, SHARMA D, UNIYAL A, et al. Recent advancements in biomarker research in schizophrenia: mapping the road from bench to bedside[J]. Metab Brain Dis, 2022, 37(7): 2197-2211. |
| 5 | CLÉMENCE-FAU M, SCHWAN R, ANGIOI-DUPREZ K, et al. Retinal structural changes in mood disorders: the optical coherence tomography to better understand physiopathology?[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 108: 110080. |
| 6 | LONDON A, BENHAR I, SCHWARTZ M. The retina as a window to the brain-from eye research to CNS disorders[J]. Nat Rev Neurol, 2013, 9(1): 44-53. |
| 7 | GUO L, DUGGAN J, CORDEIRO M F. Alzheimer′s disease and retinal neurodegeneration[J]. Curr Alzheimer Res, 2010, 7(1): 3-14. |
| 8 | INZELBERG R, RAMIREZ J A, NISIPEANU P, et al. Retinal nerve fiber layer thinning in Parkinson disease[J]. Vision Res, 2004, 44(24): 2793-2797. |
| 9 | WAGNER S K, CORTINA-BORJA M, SILVERSTEIN S M, et al. Association between retinal features from multimodal imaging and schizophrenia[J]. JAMA Psychiatry, 2023, 80(5): 478-487. |
| 10 | KOMATSU H, ONOGUCHI G, SILVERSTEIN S M, et al. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography[J]. Mol Psychiatry, 2024, 29(2): 464-482. |
| 11 | GONZALEZ-DIAZ J M, RADUA J, SANCHEZ-DALMAU B, et al. Mapping retinal abnormalities in psychosis: meta-analytical evidence for focal peripapillary and macular reductions[J]. Schizophr Bull, 2022, 48(6): 1194-1205. |
| 12 | BLOSE B A, LAI A, CROSTA C, et al. Retinal neurodegeneration as a potential biomarker of accelerated aging in schizophrenia spectrum disorders[J]. Schizophr Bull, 2023, 49(5): 1316-1324. |
| 13 | SARKAR S, RAJALAKSHMI A R, AVUDAIAPPAN S, et al. Exploring the role of macular thickness as a potential early biomarker of neurodegeneration in acute schizophrenia[J]. Int Ophthalmol, 2021, 41(8): 2737-2746. |
| 14 | LEE W W, TAJUNISAH I, SHARMILLA K, et al. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7785-7792. |
| 15 | ASCASO F J, RODRIGUEZ-JIMENEZ R, CABEZÓN L, et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: influence of recent illness episodes[J]. Psychiatry Res, 2015, 229(1/2): 230-236. |
| 16 | KANGO A, GROVER S, GUPTA V, et al. A comparative study of retinal layer changes among patients with schizophrenia and healthy controls[J]. Acta Neuropsychiatr, 2023, 35(3): 165-176. |
| 17 | DOMAGAŁA A, DOMAGAŁA L, KOPIŚ- POSIEJ N, et al. Differentiation of the retinal morphology aging trajectories in schizophrenia and their associations with cognitive dysfunctions[J]. Front Psychiatry, 2023, 14: 1207608. |
| 18 | PADMANABHAN A, PRABHU P B, VIDYADHARAN V, et al. Retinal nerve fiber layer thickness in patients with schizophrenia and its relation with cognitive impairment[J]. Indian J Psychol Med, 2024, 46(3): 238-244. |
| 19 | JANTI S S, TIKKA S K. Retinal microvasculature in schizophrenia: a meta-analysis with trial sequential analysis of studies assessing vessel density using optical coherence tomography angiography[J]. Asian J Psychiatr, 2023, 84: 103570. |
| 20 | KOMAN-WIERDAK E, RÓG J, BRZOZOWSKA A, et al. Analysis of the peripapillary and macular regions using OCT angiography in patients with schizophrenia and bipolar disorder[J]. J Clin Med, 2021, 10(18): 4131. |
| 21 | BANNAI D, ADHAN I, KATZ R, et al. Quantifying retinal microvascular morphology in schizophrenia using swept-source optical coherence tomography angiography[J]. Schizophr Bull, 2022, 48(1): 80-89. |
| 22 | SILVERSTEIN S M, LAI A, GREEN K M, et al. Retinal microvasculature in schizophrenia[J]. Eye Brain, 2021, 13: 205-217. |
| 23 | APPAJI A, NAGENDRA B, CHAKO D M, et al. Retinal vascular tortuosity in schizophrenia and bipolar disorder[J]. Schizophr Res, 2019, 212: 26-32. |
| 24 | APPAJI A, NAGENDRA B, CHAKO D M, et al. Examination of retinal vascular trajectory in schizophrenia and bipolar disorder[J]. Psychiatry Clin Neurosci, 2019, 73(12): 738-744. |
| 25 | APPAJI A, NAGENDRA B, CHAKO D M, et al. Relation between retinal vascular abnormalities and working memory impairment in patients with schizophrenia and bipolar disorder[J]. Asian J Psychiatr, 2020, 49: 101942. |
| 26 | LAVOIE J, ILLIANO P, SOTNIKOVA T D, et al. The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders[J]. Biol Psychiatry, 2014, 75(6): 479-486. |
| 27 | POPOVA E, KUPENOVA P. Effects of dopamine D1 receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation[J]. Vision Res, 2011, 51(14): 1627-1636. |
| 28 | BALOGH Z, BENEDEK G, KÉRI S. Retinal dysfunctions in schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2008, 32(1): 297-300. |
| 29 | DEMMIN D L, MOTE J, BEAUDETTE D M, et al. Retinal functioning and reward processing in schizophrenia[J]. Schizophr Res, 2020, 219: 25-33. |
| 30 | MOGHIMI P, JIMENEZ N T, MCLOON L K, et al. Electoretinographic evidence of retinal ganglion cell-dependent function in schizophrenia[J]. Schizophr Res, 2020, 219: 34-46. |
| 31 | BERNARDIN F, SCHWITZER T, ANGIOI-DUPREZ K, et al. Retinal ganglion cells dysfunctions in schizophrenia patients with or without visual hallucinations[J]. Schizophr Res, 2020, 219: 47-55. |
| 32 | JOHNSON H, COWEY A. Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey[J]. Exp Brain Res, 2000, 132(2): 269-275. |
| 33 | MEHTA J S, PLANT G T. Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia[J]. Am J Ophthalmol, 2005, 140(4): 727-729. |
| 34 | ANDREASEN N C, FLASHMAN L, FLAUM M, et al. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging[J]. JAMA, 1994, 272(22): 1763-1769. |
| 35 | WHITE T, MOELLER S, SCHMIDT M, et al. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia[J]. Hum Brain Mapp, 2012, 33(8): 1803-1811. |
| 36 | ZHUO C J, XIAO B, JI F, et al. Patients with first-episode untreated schizophrenia who experience concomitant visual disturbances and auditory hallucinations exhibit co-impairment of the brain and retinas: a pilot study[J]. Brain Imaging Behav, 2021, 15(3): 1533-1541. |
| 37 | FRIEDEL E B N, HAHN H T, MAIER S, et al. Structural and functional retinal alterations in patients with paranoid schizophrenia[J]. Transl Psychiatry, 2022, 12(1): 402. |
| 38 | JEROTIC S, IGNJATOVIC Z, SILVERSTEIN S M, et al. Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives[J]. Curr Opin Psychiatry, 2020, 33(5): 476-483. |
| 39 | CARAVAGGIO F, SCIFO E, SIBILLE E L, et al. Expression of dopamine D2 and D3 receptors in the human retina revealed by positron emission tomography and targeted mass spectrometry[J]. Exp Eye Res, 2018, 175: 32-41. |
| 40 | SOLOMON S G. Retinal ganglion cells and the magnocellular, parvocellular, and koniocellular subcortical visual pathways from the eye to the brain[J]. Handb Clin Neurol, 2021, 178: 31-50. |
| 41 | REMY I, BERNARDIN F, LIGIER F, et al. Association between retinal and cortical visual electrophysiological impairments in schizophrenia[J]. J Psychiatry Neurosci, 2023, 48(3): E171-E178. |
| 42 | GAO X R, HUANG H, KIM H. Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort[J]. Hum Mol Genet, 2019, 28(7): 1162-1172. |
| 43 | BOUDRIOT E, GABRIEL V, POPOVIC D, et al. Signature of altered retinal microstructures and electrophysiology in schizophrenia spectrum disorders is associated with disease severity and polygenic risk[J]. Biol Psychiatry, 2024, 96(10): 792-803. |
| 44 | HÉBERT M, GAGNÉ A M, PARADIS M E, et al. Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders[J]. Biol Psychiatry, 2010, 67(3): 270-274. |
| 45 | MAZIADE M, BUREAU A, JOMPHE V, et al. Retinal function and preclinical risk traits in children and adolescents at genetic risk of schizophrenia and bipolar disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 112: 110432. |
| 46 | LIZANO P, BANNAI D, LUTZ O, et al. A meta-analysis of retinal cytoarchitectural abnormalities in schizophrenia and bipolar disorder[J]. Schizophr Bull, 2020, 46(1): 43-53. |
| 47 | CARRIELLO M A, COSTA D F B, ALVIM P H P, et al. Retinal layers and symptoms and inflammation in schizophrenia[J]. Eur Arch Psychiatry Clin Neurosci, 2024, 274(5): 1115-1124. |
| 48 | KORANN V, APPAJI A, JACOB A, et al. Association between retinal vascular caliber and brain structure in schizophrenia[J]. Asian J Psychiatr, 2021, 61: 102707. |
| 49 | KIRIN M, NAGY R, MACGILLIVRAY T J, et al. Determinants of retinal microvascular features and their relationships in two European populations[J]. J Hypertens, 2017, 35(8): 1646-1659. |
| 50 | NORTH H F, WEISSLEDER C, BITAR M, et al. RNA-sequencing suggests extracellular matrix and vasculature dysregulation could impair neurogenesis in schizophrenia cases with elevated inflammation[J]. Schizophrenia (Heidelb), 2024, 10(1): 50. |
| 51 | ALTUN I K, TUREDI N, ARAS N, et al. Psychopharmacological signatures in the retina in schizophrenia and bipolar disorder: an optic coherence tomography study[J]. Psychiatr Danub, 2020, 32(3/4): 351-358. |
| 52 | HUPPÉ- GOURGUES F, COUDÉ G, LACHAPELLE P, et al. Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram[J]. Vision Res, 2005, 45(2): 137-145. |
| 53 | SILVERSTEIN S M, FRADKIN S I, DEMMIN D L. Schizophrenia and the retina: towards a 2020 perspective[J]. Schizophr Res, 2020, 219: 84-94. |
| 54 | HÉBERT M, MÉRETTE C, PACCALET T, et al. Light evoked potentials measured by electroretinogram may tap into the neurodevelopmental roots of schizophrenia[J]. Schizophr Res, 2015, 162(1/2/3): 294-295. |
| 55 | BERNARDIN F, SCHWITZER T, SCHWAN R, et al. Altered central vision and amacrine cells dysfunction as marker of hypodopaminergic activity in treated patients with schizophrenia[J]. Schizophr Res, 2022, 239: 134-141. |
| [1] | 王偲佳, 魏燕燕, 钱禛颖, 李清伟, 王继军. 精神障碍患者视网膜结构变化的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 247-252. |
| [2] | 陈铭豪, 刘沛雨, 王旋, 吴一想, 江玉瑾, 张朝阳, 张敬法. 糖尿病视网膜病变的药物治疗研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 822-829. |
| [3] | 周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳. 基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究[J]. 上海交通大学学报(医学版), 2024, 44(5): 552-559. |
| [4] | 陈小畅, 张晨. 精神分裂症患者体质量增加的非药物干预研究进展[J]. 上海交通大学学报(医学版), 2024, 44(5): 635-640. |
| [5] | 徐晓君, 叶敏捷, 王玉城, 王文霞, 钱胜, 叶丹弟, 潘乐乐, 胡欣, 尹晓莉, 李美花, 林光耀. 儿童首发精神分裂症患者和正常儿童前脉冲抑制的对照研究[J]. 上海交通大学学报(医学版), 2023, 43(5): 606-610. |
| [6] | 傅丽蓉, 张晨. 环状RNA在精神分裂症中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(11): 1445-1449. |
| [7] | 谢小雷, 江佩欣, 张敬鸿, 莫骏健, 吴可凡, 曾康逸. 视网膜母细胞瘤结合锌指蛋白1调控肥胖和肿瘤信号通路研究综述[J]. 上海交通大学学报(医学版), 2023, 43(1): 114-119. |
| [8] | 李雯, 李苑, 叶海昀, 张笑笑, 乔彤, 李嫔. 1型糖尿病儿童眼底黄斑区早期微血管变化的观察[J]. 上海交通大学学报(医学版), 2022, 42(9): 1311-1314. |
| [9] | 沈辉, 吴悦娟, 朱慧娟, 徐初琛, 张莉, 范青. 基于正念的干预对慢性精神分裂症住院患者的疗效分析[J]. 上海交通大学学报(医学版), 2022, 42(12): 1693-1698. |
| [10] | 陆如平, 高慧, 蒋琳娜, 陈晓亚, 彭红, 沈辉, 范青. 精神运动康复对稳定期精神分裂症患者阴性症状及认知功能的影响[J]. 上海交通大学学报(医学版), 2022, 42(1): 77-81. |
| [11] | 舒毅扬, 张思齐, 刘海芸. 识别和预测年龄相关性黄斑变性进展的影像学标志的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(9): 1240-1245. |
| [12] | 沈梦婷, 张选红, 钱禛颖, 李惠, 盛建华, 王继军, 唐莺莹. 精神分裂症与抑郁症失匹配负波异常的对照研究[J]. 上海交通大学学报(医学版), 2021, 41(8): 1041-1045. |
| [13] | 罗丽颖, 唐敏, 项潇琼, 傅扬. 恒定性外斜视视网膜微血流及厚度初步分析[J]. 上海交通大学学报(医学版), 2021, 41(8): 1068-1073. |
| [14] | 陈功, 沈玺. OCT与OCTA在颈动脉狭窄导致的慢性眼缺血性疾病中的应用[J]. 上海交通大学学报(医学版), 2021, 41(8): 1109-1113. |
| [15] | 轩红艳, 王丽华, 李华芳. 精神分裂症患者骨代谢影响因素的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(7): 972-976. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||