
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (5): 630-638.doi: 10.3969/j.issn.1674-8115.2025.05.012
收稿日期:2024-12-10
接受日期:2025-02-18
出版日期:2025-05-28
发布日期:2025-05-15
通讯作者:
罗 艳,主任医师,博士;电子信箱:ly11087@rjh.com.cn。作者简介:禹 恺(1998—),男,硕士生;电子信箱:17660749027@163.com。
基金资助:
YU Kai1, SHUAI Zhewei2, HUANG Hongjun2, LUO Yan1,2(
)
Received:2024-12-10
Accepted:2025-02-18
Online:2025-05-28
Published:2025-05-15
Contact:
LUO Yan, E-mail: ly11087@rjh.com.cn.Supported by:摘要:
小胶质细胞是中枢神经系统(central nervous system,CNS)中的常驻免疫细胞,其在大脑稳态维持和神经保护中发挥双刃剑的作用。在正常状态下,小胶质细胞通过监测环境变化维持大脑的稳态。当发生神经损伤或受到某些病理性刺激时,小胶质细胞会迅速激活并启动一系列复杂的免疫反应,从而引发神经炎症。小胶质细胞的适当激活可以通过抑制或清除多种病原体来保护大脑,但是过度的神经炎症则会导致神经元损伤,甚至死亡。这种炎症反应失调是多种CNS炎症性疾病(如阿尔茨海默病、帕金森病、脓毒症相关性脑病、缺血性脑卒中等)病理发展的核心特征之一。近年来,随着单细胞测序、蛋白质组学和基因编辑等技术的快速发展,针对小胶质细胞参与CNS炎症性疾病的分子机制研究取得了重要进展,尤其是在炎症小体活化、表观遗传修饰、代谢重编程等方面。然而,由于小胶质细胞在不同的病理条件下表现出异质性和双重性,临床实践上靶向小胶质细胞的治疗手段仍未能普遍应用。该文以小胶质细胞为切入点,介绍其参与CNS炎症性疾病发生发展的分子机制及靶向调控治疗策略,旨在为后续精准调控小胶质细胞功能、开发更多靶向治疗药物提供理论参考。
中图分类号:
禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638.
YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638.
| 1 | CROESE T, CASTELLANI G, SCHWARTZ M. Immune cell compartmentalization for brain surveillance and protection[J]. Nat Immunol, 2021, 22(9): 1083-1092. |
| 2 | SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Semin Cell Dev Biol, 2019, 94: 112-120. |
| 3 | XIN Y W, TIAN M, DENG S X, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation[J]. Mol Neurobiol, 2023, 60(3): 1369-1390. |
| 4 | CAFFAREL M M, BRAZA M S. Microglia and metastases to the central nervous system: victim, ravager, or something else?[J]. J Exp Clin Cancer Res, 2022, 41(1): 327. |
| 5 | GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. |
| 6 | ELMORE M R P, NAJAFI A R, KOIKE M A, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397. |
| 7 | SPITTAU B, DOKALIS N, PRINZ M. The role of TGFβ signaling in microglia maturation and activation[J]. Trends Immunol, 2020, 41(9): 836-848. |
| 8 | PAGANI F, PAOLICELLI R C, MURANA E, et al. Defective microglial development in the hippocampus of Cx3cr1 deficient mice[J]. Front Cell Neurosci, 2015, 9: 111. |
| 9 | BORST K, DUMAS A A, PRINZ M. Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208. |
| 10 | VIDAL-ITRIAGO A, RADFORD R A W, ARAMIDEH J A, et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol, 2022, 13: 997786. |
| 11 | BALL J B, GREEN-FULGHAM S M, WATKINS L R. Mechanisms of microglia-mediated synapse turnover and synaptogenesis[J]. Prog Neurobiol, 2022, 218: 102336. |
| 12 | WANG W B, LI Y Z, MA F L, et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer′s disease model by restoring BDNF signaling[J]. Brain Behav Immun, 2023, 113: 275-288. |
| 13 | STRIZOVA Z, BENESOVA I, BARTOLINI R, et al. M1/M2 macrophages and their overlaps: myth or reality?[J]. Clin Sci (Lond), 2023, 137(15): 1067-1093. |
| 14 | LONG Y, LI X Q, DENG J, et al. Modulating the polarization phenotype of microglia: a valuable strategy for central nervous system diseases[J]. Ageing Res Rev, 2024, 93: 102160. |
| 15 | BLITZ S E, KAPPEL A D, GESSLER F A, et al. Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: a double-edged sword[J]. Int J Mol Sci, 2022, 23(3): 1808. |
| 16 | SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer′s disease[J]. Lancet, 2021, 397(10284): 1577-1590. |
| 17 | TWAROWSKI B, HERBET M. Inflammatory processes in Alzheimer′s disease-pathomechanism, diagnosis and treatment: a review[J]. Int J Mol Sci, 2023, 24(7): 6518. |
| 18 | GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. |
| 19 | MALKO P, SYED MORTADZA S A, MCWILLIAM J, et al. TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies[J]. Front Pharmacol, 2019, 10: 239. |
| 20 | DECOUT A, KATZ J D, VENKATRAMAN S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. |
| 21 | JIN M H, SHIWAKU H, TANAKA H, et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation[J]. Nat Commun, 2021, 12(1): 6565. |
| 22 | BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. |
| 23 | ISING C, VENEGAS C, ZHANG S S, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575(7784): 669-673. |
| 24 | WANG C, FAN L, KHAWAJA R R, et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy[J]. Nat Commun, 2022, 13(1): 1969. |
| 25 | BEN-SHLOMO Y, DARWEESH S, LLIBRE-GUERRA J, et al. The epidemiology of Parkinson′s disease[J]. Lancet, 2024, 403(10423): 283-292. |
| 26 | KALIA L V, LANG A E. Parkinson′s disease[J]. Lancet, 2015, 386(9996): 896-912. |
| 27 | LIU S Y, QIAO H W, SONG T B, et al. Brain microglia activation and peripheral adaptive immunity in Parkinson′s disease: a multimodal PET study[J]. J Neuroinflammation, 2022, 19(1): 209. |
| 28 | CALABRESI P, MECHELLI A, NATALE G, et al. Alpha-synuclein in Parkinson′s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction[J]. Cell Death Dis, 2023, 14(3): 176. |
| 29 | MA C M, LIU Y, LI S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson′s disease[J]. CNS Neurosci Ther, 2023, 29(7): 2018-2035. |
| 30 | ZHOU X, ZHAO R, LV M F, et al. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression[J]. Brain Behav Immun, 2023, 109: 331-343. |
| 31 | LIU W W, WEI S Z, HUANG G D, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson′s disease mouse model[J]. FASEB J, 2020, 34(5): 6570-6581. |
| 32 | MARCUS R. What is multiple sclerosis?[J]. JAMA, 2022, 328(20): 2078. |
| 33 | KOCH-HENRIKSEN N, MAGYARI M. Apparent changes in the epidemiology and severity of multiple sclerosis[J]. Nat Rev Neurol, 2021, 17(11): 676-688. |
| 34 | ZIA S, RAWJI K S, MICHAELS N J, et al. Microglia diversity in health and multiple sclerosis[J]. Front Immunol, 2020, 11: 588021. |
| 35 | WOO M S, ENGLER J B, FRIESE M A. The neuropathobiology of multiple sclerosis[J]. Nat Rev Neurosci, 2024, 25(7): 493-513. |
| 36 | ZHANG Y H, HOU B H, LIANG P Y, et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia[J]. Cell Death Dis, 2021, 12(12): 1159. |
| 37 | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. |
| 38 | SONNEVILLE R, DE MONTMOLLIN E, POUJADE J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy[J]. Intensive Care Med, 2017, 43(8): 1075-1084. |
| 39 | YAN X Q, YANG K Y, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy: from mechanism to therapy[J]. Front Immunol, 2022, 13: 929316. |
| 40 | GAO Q Z, HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6): 2143-2150. |
| 41 | SHEN Y N, ZHANG Y, DU J Y, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021, |
| 42 | FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. |
| 43 | WANG H Q, ZHANG S Y, XIE L L, et al. Neuroinflammation and peripheral immunity: focus on ischemic stroke[J]. Int Immunopharmacol, 2023, 120: 110332. |
| 44 | XIA Q, ZHAN G F, MAO M, et al. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury[J]. Exp Mol Med, 2022, 54(2): 180-193. |
| 45 | XIA Q, GAO S, HAN T R, et al. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1[J]. J Neuroinflammation, 2022, 19(1): 301. |
| 46 | PRAMANIK S, DEVI M H, CHAKRABARTY S, et al. Microglia signaling in health and disease: implications in sex-specific brain development and plasticity[J]. Neurosci Biobehav Rev, 2024, 165: 105834. |
| 47 | SUN Z Q, ZHANG X, SO K F, et al. Targeting microglia in Alzheimer′s disease: pathogenesis and potential therapeutic strategies[J]. Biomolecules, 2024, 14(7): 833. |
| 48 | LI X Y, LI Y X, JIN Y X, et al. Transcriptional and epigenetic decoding of the microglial aging process[J]. Nat Aging, 2023, 3(10): 1288-1311. |
| 49 | MCGARRY A, ROSANBALM S, LEINONEN M, et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson′s disease: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2024, 23(1): 37-45. |
| 50 | DUBOIS B, LÓPEZ-ARRIETA J, LIPSCHITZ S, et al. Masitinib for mild-to-moderate Alzheimer′s disease: results from a randomized, placebo-controlled, phase 3, clinical trial[J]. Alzheimers Res Ther, 2023, 15(1): 39. |
| 51 | ZHAO Y J, WU X L, LI X G, et al. TREM2 is a receptor for β-amyloid that mediates microglial function[J]. Neuron, 2018, 97(5): 1023-1031.e7. |
| 52 | LONG H, SIMMONS A, MAYORGA A, et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer′s disease[J]. Alzheimers Res Ther, 2024, 16(1): 235. |
| 53 | ZHANG X L, SUBBANNA S, WILLIAMS C R O, et al. Anti-inflammatory action of BT75, a novel RARα agonist, in cultured microglia and in an experimental mouse model of Alzheimer′s disease[J]. Neurochem Res, 2023, 48(6): 1958-1970. |
| 54 | MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. |
| 55 | LONNEMANN N, HOSSEINI S, MARCHETTI C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer′s disease[J]. Proc Natl Acad Sci USA, 2020, 117(50): 32145-32154. |
| 56 | GORDON R, ALBORNOZ E A, CHRISTIE D C, et al. Inflammasome inhibition prevents α- synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066. |
| 57 | MCGINLEY M P, COHEN J A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions[J]. Lancet, 2021, 398(10306): 1184-1194. |
| 58 | QIN C, FAN W H, LIU Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway[J]. Stroke, 2017, 48(12): 3336-3346. |
| 59 | LUO J, FENG Y, LI M Y, et al. Repetitive transcranial magnetic stimulation improves neurological function and promotes the anti-inflammatory polarization of microglia in ischemic rats[J]. Front Cell Neurosci, 2022, 16: 878345. |
| 60 | ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Transl Stroke Res, 2020, 11(3): 450-467. |
| 61 | WALTER H L, PIKHOVYCH A, ENDEPOLS H, et al. Transcranial-direct-current-stimulation accelerates motor recovery after cortical infarction in mice: the interplay of structural cellular responses and functional recovery[J]. Neurorehabil Neural Repair, 2022, 36(10/11): 701-714. |
| [1] | 杨乐, 周怡, 王钶韵, 赖娅莉. 大黄素改善阿尔茨海默病认知障碍、内质网应激和神经炎症的研究[J]. 上海交通大学学报(医学版), 2025, 45(6): 727-734. |
| [2] | 罗文, 吕明君, 张珍, 张雪, 姚志荣. 自噬在皮肤黑色素瘤中的双重效应及耐药中的作用研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 233-240. |
| [3] | 唐珺倩, 李本尚. 儿童高危细胞遗传学B系急性淋巴细胞白血病治疗新进展[J]. 上海交通大学学报(医学版), 2025, 45(10): 1390-1399. |
| [4] | 王晓红, 方贻儒. 双相障碍神经炎症机制的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(1): 107-112. |
| [5] | 蔡蔷薇, 孙锋, 吴文玉, 邵付明, 高正良, 金盛凯. 多发性硬化症小胶质细胞转录调控网络分析[J]. 上海交通大学学报(医学版), 2025, 45(1): 29-41. |
| [6] | 曾德洁, 陈增辉, 丁乾坤, 孙夏青, 孙琪, 赵士兵. 天然来源的多糖在干预神经发育障碍中的应用前景[J]. 上海交通大学学报(医学版), 2024, 44(6): 779-787. |
| [7] | 张勇, 李伟宏, 程志鹏, 王斌, 王思珩, 王毓斌. 受体相互作用蛋白激酶1调节癌症进展和免疫反应的研究现状[J]. 上海交通大学学报(医学版), 2024, 44(6): 788-794. |
| [8] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
| [9] | 丁艳玲, 李杰, 袁军, 李燕. 慢性淋巴细胞白血病靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 264-270. |
| [10] | 唐思洁, 糜坚青. 抗体药物偶联物在血液肿瘤中的临床应用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(12): 1607-1614. |
| [11] | 方馨悦, 石岚, 夏思易, 王佳璇, 吴英理, 何珂骏. Menin-MLL蛋白相互作用及相关抑制剂在MLL基因重排白血病中应用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1287-1298. |
| [12] | 周婉桢, 滕银成. 非经典Wnt通路在卵巢癌中的作用与潜在治疗意义研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1056-1063. |
| [13] | 朱晓晨, 谢欣宜, 赵旭日, 徐丽娜, 何智妍, 周薇. 小胶质细胞Stat3基因条件性敲除小鼠的构建及鉴定[J]. 上海交通大学学报(医学版), 2023, 43(6): 689-698. |
| [14] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
| [15] | 徐瀛濂, 田静, 张翔, 赵顺英. 气道上皮细胞在哮喘发病机制中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 619-623. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||