| [1] |
TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
|
| [2] |
WANG T, WANG L, ZHANG L P, et al. Single-cell RNA sequencing in orthopedic research[J]. Bone Res, 2023, 11(1): 10.
|
| [3] |
GU Y Y, HU Y, ZHANG H, et al. Single-cell RNA sequencing in osteoarthritis[J]. Cell Prolif, 2023, 56(12): e13517.
|
| [4] |
SAUL D, KHOSLA S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence[J]. Endocr Rev, 2022, 43(6): 984-1002.
|
| [5] |
NICHOLSON J A, MAKARAM N, SIMPSON A, et al. Fracture nonunion in long bones: a literature review of risk factors and surgical management[J]. Injury, 2021, 52(Suppl 2): S3-S11.
|
| [6] |
ZHANG H, WANG R, WANG G, et al. Single-cell RNA sequencing reveals B cells are important regulators in fracture healing[J]. Front Endocrinol, 2021, 12: 666140.
|
| [7] |
LU Y N, LUO Y, ZHANG Q, et al. Decoding the immune landscape following hip fracture in elderly patients: unveiling temporal dynamics through single-cell RNA sequencing[J]. Immun Ageing, 2023, 20(1): 54.
|
| [8] |
AVIN K G, DOMINGUEZ J M 2nd, CHEN N X, et al. Single-cell RNAseq provides insight into altered immune cell populations in human fracture nonunions[J]. J Orthop Res, 2023, 41(5): 1060-1069.
|
| [9] |
TANG W, LI Z W, MIAO G Q, et al. Single-cell RNA sequencing reveals transcriptional changes in the cartilage of subchondral insufficiency fracture of the knee[J]. J Inflamm Res, 2022, 15: 6105-6112.
|
| [10] |
YAO L, LU J, ZHONG L, et al. Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy[J]. eLife, 2023, 12: e89822.
|
| [11] |
HAO R C, LI Z L, WANG F Y, et al. Single-cell transcriptomic analysis identifies a highly replicating Cd168+ skeletal stem/progenitor cell population in mouse long bones[J]. J Genet Genom, 2023, 50(9): 702-712.
|
| [12] |
LIU R, JIAO Y R, HUANG M, et al. Mechanosensitive protein polycystin-1 promotes periosteal stem/progenitor cells osteochondral differentiation in fracture healing[J]. Theranostics, 2024, 14(6): 2544-2559.
|
| [13] |
JULIEN A, KANAGALINGAM A, MARTÍNEZ-SARRÀ E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair[J]. Nat Commun, 2021, 12(1): 2860.
|
| [14] |
XIAO D, FANG L, LIU Z T, et al. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation[J]. J Clin Invest, 2023, 134(3): e168558.
|
| [15] |
LIU J T, LIN X, MCDAVID A, et al. Molecular signatures distinguish senescent cells from inflammatory cells in aged mouse callus stromal cells[J]. Front Endocrinol (Lausanne), 2023, 14: 1090049.
|
| [16] |
GALEA G L, ZEIN M R, ALLEN S, et al. Making and shaping endochondral and intramembranous bones[J]. Dev Dyn, 2021, 250(3): 414-449.
|
| [17] |
LEITCH V D, DUNCAN BASSETT J H, WILLIAMS G R. Role of thyroid hormones in craniofacial development[J]. Nat Rev Endocrinol, 2020, 16(3): 147-164.
|
| [18] |
LU D Z, ZHANG Y F, LIANG S M, et al. M2 macrophages guide periosteal stromal cell recruitment and initiate bone injury regeneration[J]. Biomedicines, 2024, 12(6): 1205.
|
| [19] |
NAKAYAMA M, OKADA H, SEKI M, et al. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process[J]. Regen Ther, 2022, 21: 9-18.
|
| [20] |
WANG Y Y, QIN Q Z, WANG Z Y, et al. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells[J]. Cell Death Dis, 2024, 15(6): 420.
|
| [21] |
WINTERS R, TATUM S A. Craniofacial distraction osteogenesis[J]. Facial Plast Surg Clin North Am, 2014, 22(4): 653-664.
|
| [22] |
JIANG W D, ZHU P Q, ZHANG T, et al. PRRX1+MSCs enhance mandibular regeneration during distraction osteogenesis[J]. J Dent Res, 2023, 102(9): 1058-1068.
|
| [23] |
TEVLIN R, GRIFFIN M, CHEN K, et al. Denervation during mandibular distraction osteogenesis results in impaired bone formation[J]. Sci Rep, 2023, 13(1): 2097.
|
| [24] |
WENG Y T, WANG H C, WU D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL[J]. Cell Res, 2022, 32(9): 814-830.
|
| [25] |
ZHOU B O, YUE R, MURPHY M M, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2): 154-168.
|
| [26] |
MIZOGUCHI T, PINHO S, AHMED J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development[J]. Dev Cell, 2014, 29(3): 340-349.
|
| [27] |
SHU H S, LIU Y L, TANG X T, et al. Tracing the skeletal progenitor transition during postnatal bone formation[J]. Cell Stem Cell, 2021, 28(12): 2122-2136.e3.
|
| [28] |
DING Y, MO C, GENG J, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109.
|
| [29] |
JIN A, XU H, GAO X, et al. ScRNA-seq reveals a distinct osteogenic progenitor of alveolar bone[J]. J Dent Res, 2023, 102(6): 645-655.
|
| [30] |
WAN Z Q, BAI X Q, WANG X, et al. Mgp high-expressing MSCs orchestrate the osteoimmune microenvironment of collagen/nanohydroxyapatite-mediated bone regeneration[J]. Adv Sci (Weinh), 2024, 11(23): e2308986.
|
| [31] |
PAN H, WEI Y X, ZENG C J, et al. Hierarchically assembled nanofiber scaffold guides long bone regeneration by promoting osteogenic/chondrogenic differentiation of endogenous mesenchymal stem cells[J]. Small, 2024, 20(26): e2309868.
|
| [32] |
WANG X Q, MA C Q, ZHANG X C, et al. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the Dura mater[J]. Regen Biomater, 2024, 11: rbae059.
|
| [33] |
GUO P, LIU X Z, ZHANG P H, et al. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration[J]. Bioact Mater, 2021, 9: 281-298.
|
| [34] |
HE Z H, LI H, ZHANG Y Y, et al. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells[J]. Bioact Mater, 2023, 34: 98-111.
|
| [35] |
WEI J, BAPTISTA-HON D T, WANG Z, et al. Bioengineered human tissue regeneration and repair using endogenous stem cells[J]. Cell Rep Med, 2023, 4(8): 101156.
|
| [36] |
SUN J, HU L L, BOK S, et al. A vertebral skeletal stem cell lineage driving metastasis[J]. Nature, 2023, 621(7979): 602-609.
|