1 |
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015[J]. J Am Coll Cardiol, 2017, 70(1): 1-25.
|
2 |
Nakashima M, Toyono T, Akamine A, et al. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis[J]. Mech Dev, 1999, 80(2): 185-189.
|
3 |
Oxburgh L. TGF superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population[J]. Development, 2004, 131(18): 4593-4605.
|
4 |
Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice[J]. Dev Dyn, 2006, 235(11): 3016-3025.
|
5 |
Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Dev Camb Engl, 2011, 138(19): 4131-4142.
|
6 |
Li Z, Zeng F, Mitchell AD, et al. Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation[J]. Biochem Biophys Res Commun, 2011, 416(3): 289-292.
|
7 |
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J]. Cell, 2013, 153(4): 828-839.
|
8 |
Zhang YH, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease[J]. Oncotarget, 2017, 8(46): 81604-81616.
|
9 |
Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis[J]. Crit Rev Biochem Mol Biol, 2019, 54(2): 174-183.
|
10 |
Kondás K, Szláma G, Trexler M, et al. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11[J]. J Biol Chem, 2008, 283(35): 23677-23684.
|
11 |
Jamaiyar A, Wan W, Janota DM, et al. The versatility and paradox of GDF 11[J]. Pharmacol Ther, 2017, 175: 28-34.
|
12 |
Roh JD, Hobson R, Chaudhari V, et al. Activin type II receptor signaling in cardiac aging and heart failure[J]. Sci Transl Med, 2019, 11(482): eaau8680.
|
13 |
Su HH, Liao JM, Wang YH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury[J]. Basic Res Cardiol, 2019, 114(3): 20.
|
14 |
Zhang YH, Cheng F, Du XT, et al. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells[J]. Oncotarget, 2016, 7(11): 12063-12074.
|
15 |
Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system[J]. Cardiovasc Res, 2006, 69(1): 15-25.
|
16 |
Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Investig, 2017, 127(10): 3770-3783.
|
17 |
Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction[J]. Front Cardiovasc Med, 2019, 6: 140.
|
18 |
Walker RG, Czepnik M, Goebel EJ, et al. Structural basis for potency differences between GDF8 and GDF11[J]. BMC Biol, 2017, 15(1): 1-22.
|
19 |
Tarver T. Heart disease and stroke statistics–2014 update: a report from the American heart association[J]. J Consumer Heal Internet, 2014, 18(2): 209.
|
20 |
Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J]. Cell Metab, 2015, 22(1): 164-174.
|
21 |
Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age[J]. Circ Res, 2016, 118(1): 29-37.
|
22 |
Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease[J]. Cell Metab, 2016, 23(6): 1207-1215.
|
23 |
Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts[J]. Eur Heart J, 2015, 36(48): 3426-3434.
|
24 |
Zhou Y, Ni SS, Song LL, et al. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri[J]. Biogerontology, 2019, 20(2): 225-239.
|
25 |
Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014, 344(6184): 649-652.
|
26 |
Ozek C, Krolewski RC, Buchanan SM, et al. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice[J]. Sci Rep, 2018, 8(1): 17293.
|
27 |
Li H, Li YX, Xiang LW, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet β-cell function and survival[J]. Diabetes, 2017, 66(7): 1914-1927.
|
28 |
Aurigemma GP. Diastolic heart failure: a common and lethal condition by any name[J]. N Engl J Med, 2006, 355(3): 308-310.
|
29 |
Smith SC, Zhang XX, Zhang XY, et al. GDF11 does not rescue aging-related pathological hypertrophy[J]. Circ Res, 2015, 117(11): 926-932.
|
30 |
Zimmers TA, Jiang YL, Wang MJ, et al. Erratum to: exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting[J]. Basic Res Cardiol, 2017, 112(5): 53.
|
31 |
Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload-induced hypertrophy, but can cause severe cachexia and premature death[J]. Circ Res, 2018, 123(11): 1220-1231.
|
32 |
Zhang CJ, Wang Y, Ge ZR, et al. GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and β-MHC through down- regulating CCL11 in mice[J]. Curr Mol Med, 2018, 18(10): 661-671.
|
33 |
Duran J, Troncoso M, Lagos D, et al. GDF11 modulates Ca2+-dependent Smad2/3 signaling to prevent cardiomyocyte hypertrophy[J]. Int J Mol Sci, 2018, 19(5): 1508.
|
34 |
Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C, et al. GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication[J]. Pharmacol Res, 2019, 146: 104273.
|
35 |
Garbern J, Kristl AC, Bassaneze V, et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H201-H212.
|
36 |
Mei W, Xiang GD, Li YX, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E-null mice[J]. Mol Ther, 2016, 24(11): 1926-1938.
|
37 |
Zhao L, Zhang SH, Cui J, et al. TERT assists GDF11 to rejuvenate senescent VEGFR2+/CD133+ cells in elderly patients with myocardial infarction[J]. Lab Investig J Tech Methods Pathol, 2019, 99(11): 1661-1688.
|
38 |
Du GQ, Shao ZB, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury[J]. Basic Res Cardiol, 2016, 112(1): 1-14.
|
39 |
Zhou B, Yu YL, Qiu Z, et al. GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats[J]. Acta Cir Bras, 2019, 34(11). DOI:10.1590/s0102-865020190110000006.
|
40 |
Zhang XJ, Tan H, Shi ZF, et al. Growth differentiation factor 11 is involved in isoproterenol-induced heart failure[J]. Mol Med Rep, 2019, 19(5): 4109-4118.
|
41 |
Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality?[J]. Int J Mol Sci, 2019, 20(14): 3563.
|
42 |
Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, et al. GDF11 implications in cancer biology and metabolism. facts and controversies[J]. Front Oncol, 2019, 9: 1039.
|