上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (8): 1122-1130.doi: 10.3969/j.issn.1674-8115.2022.08.018
• 综述 • 上一篇
收稿日期:
2022-04-27
接受日期:
2022-07-27
出版日期:
2022-08-28
发布日期:
2022-10-08
通讯作者:
蒋玲曦
E-mail:lam_ljy@163.com;jlx12120@rjh.com.cn
作者简介:
林家俞(1998—),男,硕士生;电子信箱:lam_ljy@163.com。
基金资助:
LIN Jiayu(), QIN Jiejie, JIANG Lingxi()
Received:
2022-04-27
Accepted:
2022-07-27
Online:
2022-08-28
Published:
2022-10-08
Contact:
JIANG Lingxi
E-mail:lam_ljy@163.com;jlx12120@rjh.com.cn
Supported by:
摘要:
代谢重编程是细胞为满足能量需求,通过改变代谢模式来促进细胞增殖和生长的机制。肿瘤细胞通过Warburg效应等代谢重编程模式来供能,以促进自身的生存、生长与转移。肿瘤微环境即肿瘤细胞自身所处的内环境,其不仅包括肿瘤细胞本身,还包括与肿瘤细胞关系密切的基质细胞、免疫细胞等组分。肿瘤细胞通过分泌细胞因子、代谢产物等生化分子调控细胞之间的免疫功能、信号转导,并塑造一个缺氧、酸性、营养物质匮乏的肿瘤微环境,阻断免疫细胞的抗肿瘤效应。快速增殖的肿瘤细胞与免疫细胞竞争相对匮乏的营养物质,使得肿瘤细胞本身就可营造一种免疫抑制的微环境。在免疫抑制的肿瘤微环境影响下,免疫细胞通过代谢重编程的方式来产生耐受表型相关的代谢适应,以满足自身需求,并发挥抗肿瘤或免疫抑制的功能。免疫细胞对肿瘤细胞的反应主要依赖于其特有的代谢途径,这与免疫细胞的类型与功能有关。免疫细胞的功能特性与肿瘤的免疫治疗效果直接相关。调节免疫细胞的代谢途径,可为肿瘤治疗提供良好的方向。该文阐述肿瘤微环境中免疫细胞的主要代谢途径,总结其代谢特征与免疫功能的关系,讨论代谢通路调节免疫细胞功能的作用机制,以期为改造肿瘤免疫抑制微环境及改善肿瘤免疫治疗效果提供新的思路。
中图分类号:
林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130.
LIN Jiayu, QIN Jiejie, JIANG Lingxi. Progress in metabolism of the immune cells in tumor microenvironment[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130.
Immunity type | Cell type | Metabolic pathway | Reference |
---|---|---|---|
Innate immunity | |||
M1-type TAMs | PPP | [ | |
M2-type TAMs | OXPHOS, FAO | [ | |
TANs | Glycolysis | [ | |
NKs | Glycolysis, OXPHOS | [ | |
DCs | Glycolysis | [ | |
MDSCs | Glycolysis, OXPHOS | [ | |
Adaptive immunity | |||
Effector T cells | Glycolysis, lipid metabolism | [ | |
Tregs | Lipid metabolism, OXPHOS | [ | |
Effector B cells | Glycolysis, OXPHOS | [ |
表1 肿瘤免疫微环境中主要的免疫细胞及其主要的代谢途径
Tab 1 Main immune cells and their main metabolic pathways in the tumor immune microenvironment
Immunity type | Cell type | Metabolic pathway | Reference |
---|---|---|---|
Innate immunity | |||
M1-type TAMs | PPP | [ | |
M2-type TAMs | OXPHOS, FAO | [ | |
TANs | Glycolysis | [ | |
NKs | Glycolysis, OXPHOS | [ | |
DCs | Glycolysis | [ | |
MDSCs | Glycolysis, OXPHOS | [ | |
Adaptive immunity | |||
Effector T cells | Glycolysis, lipid metabolism | [ | |
Tregs | Lipid metabolism, OXPHOS | [ | |
Effector B cells | Glycolysis, OXPHOS | [ |
1 | DEBERARDINIS R J, LUM J J, HATZIVASSILIOU G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation[J]. Cell Metab, 2008, 7(1): 11-20. |
2 | GUERRA L, BONETTI L, BRENNER D. Metabolic modulation of immunity: a new concept in cancer immunotherapy[J]. Cell Rep, 2020, 32(1): 107848. |
3 | DOMBLIDES C, LARTIGUE L, FAUSTIN B. Control of the antitumor immune response by cancer metabolism[J]. Cells, 2019, 8(2): 104. |
4 | BISWAS S K. Metabolic reprogramming of immune cells in cancer progression[J]. Immunity, 2015, 43(3): 435-449. |
5 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
6 | LEONE R D, POWELL J D. Metabolism of immune cells in cancer[J]. Nat Rev Cancer, 2020, 20(9): 516-531. |
7 | WARD P S, THOMPSON C B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate[J]. Cancer Cell, 2012, 21(3): 297-308. |
8 | CHANG C H, QIU J, O'SULLIVAN D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241. |
9 | BISWAS S K, ALLAVENA P, MANTOVANI A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions[J]. Semin Immunopathol, 2013, 35(5): 585-600. |
10 | MANTOVANI A, ALLAVENA P. The interaction of anticancer therapies with tumor-associated macrophages[J]. J Exp Med, 2015, 212(4): 435-445. |
11 | MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. |
12 | DAI X M, LU L S, DENG S K, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics, 2020, 10(20): 9332-9347. |
13 | QING J N, ZHANG Z Z, NOVÁK P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926. |
14 | MOON J S, HISATA S, PARK M A, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation[J]. Cell Rep, 2015, 12(1): 102-115. |
15 | HASCHEMI A, KOSMA P, GILLE L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab, 2012, 15(6): 813-826. |
16 | VATS D, MUKUNDAN L, ODEGAARD J I, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation[J]. Cell Metab, 2006, 4(1): 13-24. |
17 | SU P, WANG Q, BI E G, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages[J]. Cancer Res, 2020, 80(7): 1438-1450. |
18 | BANTUG G R, GALLUZZI L, KROEMER G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol, 2018, 18(1): 19-34. |
19 | RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. |
20 | RODRÍGUEZ-ESPINOSA O, ROJAS-ESPINOSA O, MORENO-ALTAMIRANO M M B, et al. Metabolic requirements for neutrophil extracellular traps formation[J]. Immunology, 2015, 145(2): 213-224. |
21 | ANCEY P B, CONTAT C, BOIVIN G, et al. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy[J]. Cancer Res, 2021, 81(9): 2345-2357. |
22 | RICE C M, DAVIES L C, SUBLESKI J J, et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression[J]. Nat Commun, 2018, 9(1): 5099. |
23 | ISAACSON B, MANDELBOIM O. Sweet killers: NK cells need glycolysis to kill tumors[J]. Cell Metab, 2018, 28(2): 183-184. |
24 | LOFTUS R M, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice[J]. Nat Commun, 2018, 9(1): 2341. |
25 | HARMON C, ROBINSON M W, HAND F, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis[J]. Cancer Immunol Res, 2019, 7(2): 335-346. |
26 | MICHELET X, DYCK L, HOGAN A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol, 2018, 19(12): 1330-1340. |
27 | KRAWCZYK C M, HOLOWKA T, SUN J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23): 4742-4749. |
28 | EVERTS B, AMIEL E, HUANG S C C, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation[J]. Nat Immunol, 2014, 15(4): 323-332. |
29 | HERBER D L, CAO W, NEFEDOVA Y, et al. Lipid accumulation and dendritic cell dysfunction in cancer[J]. Nat Med, 2010, 16(8): 880-886. |
30 | CUBILLOS-RUIZ J R, SILBERMAN P C, RUTKOWSKI M R, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis[J]. Cell, 2015, 161(7): 1527-1538. |
31 | HOSSAIN F, AL-KHAMI A A, WYCZECHOWSKA D, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies[J]. Cancer Immunol Res, 2015, 3(11): 1236-1247. |
32 | DIAS A S, ALMEIDA C R, HELGUERO L A, et al. Metabolic crosstalk in the breast cancer microenvironment[J]. Eur J Cancer, 2019, 121: 154-171. |
33 | AL-KHAMI A A, ZHENG L Q, DEL VALLE L, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells[J]. Oncoimmunology, 2017, 6(10): e1344804. |
34 | MICHALEK R D, GERRIETS V A, JACOBS S R, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186(6): 3299-3303. |
35 | SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. |
36 | GELTINK R, KYLE R L, PEARCE E L. Unraveling the complex interplay between T cell metabolism and function[J]. Annu Rev Immunol, 2018, 36: 461-488. |
37 | WAICKMAN A T, POWELL J D. mTOR, metabolism, and the regulation of T-cell differentiation and function[J]. Immunol Rev, 2012, 249(1): 43-58. |
38 | FRAUWIRTH K A, RILEY J L, HARRIS M H, et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity, 2002, 16(6): 769-777. |
39 | HO P C, BIHUNIAK J D, MACINTYRE A N, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228. |
40 | DE ROSA V, GALGANI M, PORCELLINI A, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants[J]. Nat Immunol, 2015, 16(11): 1174-1184. |
41 | HAAS R, SMITH J, ROCHER-ROS V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions[J]. PLoS Biol, 2015, 13(7): e1002202. |
42 | KUMAGAI S, KOYAMA S, ITAHASHI K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-218.e9. |
43 | WATSON M J, VIGNALI P D A, MULLETT S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021, 591(7851): 645-651. |
44 | KIDANI Y, ELSAESSER H, HOCK M B, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J]. Nat Immunol, 2013, 14(5): 489-499. |
45 | YANG W, BAI Y B, XIONG Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J]. Nature, 2016, 531(7596): 651-655. |
46 | WANG H P, FRANCO F, TSUI Y C, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol, 2020, 21(3): 298-308. |
47 | ZENG H, YANG K, CLOER C, et al. mTORC1 couples immune signals and metabolic programming to establish Treg cell function[J]. Nature, 2013, 499(7459): 485-490. |
48 | TAKE Y, KOIZUMI S, NAGAHISA A. Prostaglandin E receptor 4 antagonist in cancer immunotherapy: mechanisms of action[J]. Front Immunol, 2020, 11: 324. |
49 | MUNN D H, SHARMA M D, BABAN B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642. |
50 | GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity[J]. Cell, 2016, 167(3): 829-842.e13. |
51 | BIAN YJ, LI W, KREMER D M, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation[J]. Nature, 2020, 585(7824): 277-282. |
52 | MOLLER S H, HSUEH P C, YU Y R, et al. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging [J]. Cell Metab, 2022, 34(3): 378-395. |
53 | LIU Y N, YANG J F, HUANG D J, et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways[J]. Front Immunol, 2020, 11: 1906. |
54 | HE J L, SHANGGUAN X, ZHOU W, et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development[J]. Nat Commun, 2021, 12(1): 4371. |
55 | SCHARPING N E, MENK A V, MORECI R S, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(2): 374-388. |
56 | KURAI J, CHIKUMI H, HASHIMOTO K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines[J]. Clin Cancer Res, 2007, 13(5): 1552-1561. |
57 | PITZALIS C, JONES G W, BOMBARDIERI M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity[J]. Nat Rev Immunol, 2014, 14(7): 447-462. |
58 | CASSIM S, POUYSSEGUR J. Tumor microenvironment: a metabolic player that shapes the immune response[J]. Int J Mol Sci, 2019, 21(1): 157. |
59 | WATERS L R, AHSAN F M, WOLF D M, et al. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling[J]. iScience, 2018, 5: 99-109. |
60 | BROWN T P, GANAPATHY V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. |
61 | KOUIDHI S, BEN AYED F, BENAMMAR ELGAAIED A. Targeting tumor metabolism: a new challenge to improve immunotherapy[J]. Front Immunol, 2018, 9: 353. |
62 | HALFORD S E R, JONES P, WEDGE S, et al. A first-in-human first-in-class (FIC) trial of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with advanced solid tumours[J]. J Clin Oncol, 2017, 35(15_suppl): 2516. |
63 | OH M H, SUN I H, ZHAO L, et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells[J]. J Clin Invest, 2020, 130(7): 3865-3884. |
64 | LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. |
65 | VOSS K, LUTHERS C R, POHIDA K, et al. Fatty acid synthase contributes to restimulation-induced cell death of human CD4 T cells[J]. Front Mol Biosci, 2019, 6: 106. |
66 | FALCHOOK G, INFANTE J, ARKENAU H T, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors[J]. EClinicalMedicine, 2021, 34: 100797. |
[1] | 王雨心, 孙瑞琪, 刘坚华, 何伟娜. 开发用于肿瘤微环境成像的pH敏感荧光探针[J]. 上海交通大学学报(医学版), 2022, 42(7): 875-884. |
[2] | 李静威, 王俐文, 蒋玲曦, 詹茜, 陈皓, 沈柏用. 胰腺癌免疫抑制性肿瘤微环境研究综述[J]. 上海交通大学学报(医学版), 2021, 41(8): 1103-1108. |
[3] | 那迪娜·帕尔哈提null, 严妍, 车千纪, 罗菁, 刘鑫男, 李斌. 嵌合抗原受体T细胞疗法在胶质母细胞瘤中的应用与展望[J]. 上海交通大学学报(医学版), 2021, 41(7): 982-986. |
[4] | 顾琦晟, 张米粒, 曹灿, 李继坤. 基于TCGA数据库分析胃癌可变剪接与肿瘤免疫的关系[J]. 上海交通大学学报(医学版), 2021, 41(4): 448-458. |
[5] | 刘梦珂, 纪濛濛, 程林, 黄金艳, 孙晓建, 赵维莅, 王黎. 黄芩苷抗肿瘤作用机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 246-250. |
[6] | 赵伟光,刘志宏. 肿瘤相关成纤维细胞调控肿瘤免疫炎症微环境的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1288-1293. |
[7] | 刘 洁,仇晓春. 乳腺肿瘤干细胞研究热点及趋势分析[J]. 上海交通大学学报(医学版), 2020, 40(7): 881-888. |
[8] | 潘德燊1, 2,李 登1,邵 怡1. 白细胞介素 -11对肿瘤促进作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(4): 548-. |
[9] | 高 涵,张 萍. 子宫内膜异位症的免疫学相关研究进展[J]. 上海交通大学学报(医学版), 2020, 40(11): 1544-1549. |
[10] | 周 晗,杨晓笙,廖陈龙,张文川. 糖尿病足溃疡相关基因与免疫细胞特征分析[J]. 上海交通大学学报(医学版), 2020, 40(10): 1354-1359. |
[11] | 梁雨,江明杰,田聆. 前列腺素 E 2重塑胰腺肿瘤微环境的作用机制研究进展[J]. 上海交通大学学报(医学版), 2019, 39(8): 923-. |
[12] | 平凤,郭勇,刘玉静,曹永梅,李颖川 . 代谢组学在急性肾损伤诊断与治疗中的应用[J]. 上海交通大学学报(医学版), 2017, 37(8): 1174-. |
[13] | 卜时夏,赖东梅. 卵巢癌相关成纤维细胞的研究进展[J]. 上海交通大学学报(医学版), 2016, 36(8): 1242-. |
[14] | 谈珍,袁晓军,张勤,等. 112例恶性实体肿瘤患儿的淋巴细胞谱及化疗后改变分析[J]. 上海交通大学学报(医学版), 2015, 35(5): 728-. |
[15] | 何多奇,张西强,云慧斌,等. 谷氨酰胺强化鼻空肠管营养对老年重症颅脑损伤患者肠黏膜屏障及免疫功能的影响[J]. 上海交通大学学报(医学版), 2015, 35(5): 785-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||