1 |
International Diabetes Federation. IDF diabetes atlas 2021[M]. 10th ed. Brussels: International Diabetes Federation, 2021.
|
2 |
LI H Q, TIAN S H, CHEN T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19[J]. Diabetes Obes Metab, 2020, 22(10): 1897-1906.
|
3 |
RAHBAR S. An abnormal hemoglobin in red cells of diabetics[J]. Clin Chimica Acta, 1968, 22(2): 296-298.
|
4 |
SELVIN E. Hemoglobin A1c—using epidemiology to guide medical practice: Kelly West Award Lecture 2020[J]. Diabetes Care, 2021, 44(10): 2197-2204.
|
5 |
戴冬君, 周健. 组织间液葡萄糖监测的意义及研究进展[J]. 中华医学杂志, 2018, 98(40): 3296-3298.
|
|
DAI D J, ZHOU J. Significance and research progress of interstitial fluid glucose monitoring[J]. Natl Med J China, 2018, 98(40): 3296-3298.
|
6 |
CLARK L C Jr, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Ann N Y Acad Sci, 1962, 102(1): 29-45.
|
7 |
贾伟平. 持续葡萄糖监测[M]. 上海: 上海科学技术出版社, 2017.
|
|
JIA W P. Contiuous glucose monitoring[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017.
|
8 |
EHRHARDT N, HIRSCH I B. The impact of COVID-19 on CGM use in the hospital[J]. Diabetes Care, 2020, 43(11): 2628-2630.
|
9 |
SHEN Y, FAN X H, ZHANG L, et al. Thresholds of glycemia and the outcomes of COVID-19 complicated with diabetes: a retrospective exploratory study using continuous glucose monitoring[J]. Diabetes Care, 2021, 44(4): 976-982.
|
10 |
中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(10): 936-948.
|
|
Chinese Diabetes Society. Clinical application guideline for blood glucose monitoring in China (2021 edition)[J]. Chin J Diabetes Mellitus, 2021, 13(10): 936-948.
|
11 |
LU J Y, WANG C F, CAI J H, et al. Association of HbA1c with all-cause mortality across varying degrees of glycemic variability in type 2 diabetes[J]. J Clin Endocrinol Metab, 2021, 106(11): 3160-3167.
|
12 |
DANNE T, NIMRI R, BATTELINO T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640.
|
13 |
LU J Y, MA X J, ZHANG L, et al. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: a preliminary study[J]. Diabetes Res Clin Pract, 2020, 161: 108032.
|
14 |
戴冬君, 陆静毅, 周健. 持续葡萄糖监测新指标: 葡萄糖在目标范围内时间的临床意义解析[J]. 中华糖尿病杂志, 2019, 11(2): 139-142.
|
|
DAI D J, LU J Y, ZHOU J. A new indicator of continuous glucose monitoring: analysis of the clinical significance of time in range[J]. Chin J Diabetes Mellitus, 2019, 11(2): 139-142.
|
15 |
LU J Y, MA X J, ZHOU J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11): 2370-2376.
|
16 |
BECK R W, BERGENSTAL R M, RIDDLESWORTH T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3): 400-405.
|
17 |
LU J Y, WANG C F, SHEN Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study[J]. Diabetes Care, 2021, 44(2): 549-555.
|
18 |
MAYEDA L, KATZ R, AHMAD I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e000991.
|
19 |
YOO J H, CHOI M S, AHN J, et al. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in type 2 diabetes[J]. Diabetes Technol Ther, 2020, 22(10): 768-776.
|
20 |
GUO Q Y, ZANG P, XU S Y, et al. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese type 2 diabetes[J]. J Diabetes Res, 2020, 2020: 5817074.
|
21 |
KIM M Y, KIM G, PARK J Y, et al. The association between continuous glucose monitoring-derived metrics and cardiovascular autonomic neuropathy in outpatients with type 2 diabetes[J]. Diabetes Technol Ther, 2021, 23(6): 434-442.
|
22 |
LU J Y, MA X J, SHEN Y, et al. Time in range is associated with carotid intima-media thickness in type 2 diabetes[J]. Diabetes Technol Ther, 2020, 22(2): 72-78.
|
23 |
XIE P G, DENG B, ZHANG X, et al. Time in range in relation to amputation and all-cause mortality in hospitalised patients with diabetic foot ulcers[J]. Diabetes Metab Res Rev, 2022, 38(2): e3498.
|
24 |
KRISTENSEN K, ÖGGE L E, SENGPIEL V, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: an observational cohort study of 186 pregnancies[J]. Diabetologia, 2019, 62(7): 1143-1153.
|
25 |
ZHENG Y W, SHEN Y, JIANG S S, et al. Maternal glycemic parameters and adverse pregnancy outcomes among high-risk pregnant women[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000774.
|
26 |
American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes—2021[J]. Diabetes Care, 2021, 44(Suppl 1): S73-S84.
|
27 |
GRUNBERGER G, SHERR J, ALLENDE M, et al. American Association of Clinical Endocrinology clinical practice guideline: the use of advanced technology in the management of persons with diabetes mellitus[J]. Endocr Pract, 2021, 27(6): 505-537.
|
28 |
WILMOT E G, LUMB A, HAMMOND P, et al. Time in range: a best practice guide for UK diabetes healthcare professionals in the context of the COVID-19 global pandemic[J]. Diabet Med, 2021, 38(1): e14433.
|
29 |
BATTELINO T, DANNE T, BERGENSTAL R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8): 1593-1603.
|