1 |
SEEMAN N C. Nucleic acid junctions and lattices[J]. J Theor Biol, 1982, 99(2): 237-247.
|
2 |
GOODMAN R P, SCHAAP I A, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication[J]. Science, 2005, 310(5754): 1661-1665.
|
3 |
ZHANG T, CUI W T, TIAN T R, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47115-47126.
|
4 |
ZHANG X L, LIU N X, ZHOU M, et al. The application of tetrahedral framework nucleic acids as a drug carrier in biomedicine fields[J]. Curr Stem Cell Res Ther, 2021, 16(1): 48-56.
|
5 |
叶德楷, 左小磊, 樊春海. 基于DNA纳米结构的传感界面调控及生物检测应用[J]. 化学进展, 2017, 29(1): 36-46.
|
|
YE D K, ZUO X L, FAN C M. DNA nanostructure-based engineering of the biosensing interface for biomolecular detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
|
6 |
SUN Y, LIU Y H, ZHANG B W, et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli)[J]. Bioact Mater, 2021, 6(8): 2281-2290.
|
7 |
ZHANG M, ZHANG X L, TIAN T R, et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis[J]. Bioact Mater, 2022, 8: 368-380.
|
8 |
AIUTI A, BIASCO L, SCARAMUZZA S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome[J]. Science, 2013, 341(6148): 1233151.
|
9 |
SONG G Q, DONG H S, MA D H, et al. Tetrahedral framework nucleic acid delivered RNA therapeutics significantly attenuate pancreatic cancer progression via inhibition of CTR1-dependent copper absorption[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46334-46342.
|
10 |
CHAROENPHOL P, BERMUDEZ H. Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5): 1721-1725.
|
11 |
XIE X, SHAO X, MA W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018, 10(12): 5457-5465.
|
12 |
MA W J, ZHAN Y X, ZHANG Y X, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2[J]. Nano Lett, 2019, 19(7): 4505-4517.
|
13 |
ZHANG T, TIAN T R, ZHOU R H, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment[J]. Nat Protoc, 2020, 15(8): 2728-2757.
|
14 |
QIAN H S, ZHOU T, FU Y X, et al. Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity[J]. Mol Ther Nucleic Acids, 2022, 27: 763-773.
|
15 |
WANG Y, LI Y J, GAO S, et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice[J]. Nano Lett, 2022, 22(4): 1759-1768.
|
16 |
ZHOU M, GAO S, ZHANG X L, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions[J]. Bioact Mater, 2020, 6(6): 1676-1688.
|
17 |
GAO S, ZHOU M, LI Y J, et al. Tetrahedral framework nucleic acids reverse new-onset type 1 diabetes[J]. ACS Appl Mater Interfaces, 2021, 13(43): 50802-50811.
|
18 |
LI Y J, GAO S, SHI S R, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity[J]. Nanomicro Lett, 2021, 13(1): 86.
|
19 |
LIU X Y, YU Z Y, WU Y, et al. The immune regulatory effects of tetrahedral framework nucleic acid on human T cells via the mitogen-activated protein kinase pathway[J]. Cell Prolif, 2021, 54(8): e13084.
|
20 |
ZHONG J, GUO B, XIE J, et al. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4: 15036.
|
21 |
LI P, FU L, LIAO Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment[J]. Biomaterials, 2021, 278: 121131.
|
22 |
FU L W, LI P X, ZHU J Y, et al. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ[J]. Bioact Mater, 2022, 9: 411-427.
|
23 |
YAO Y X, WEN Y T, LI Y J, et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway[J]. Nanoscale, 2021, 13(37): 15598-15610.
|
24 |
LIN S Y, ZHANG Q, LI S H, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11397-11408.
|
25 |
ZHAO D, LIU M T, LI J J, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29439-29449.
|
26 |
GUAN H Q, YANG S L, ZHENG C, et al. DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions[J]. Talanta, 2021, 233: 122543.
|