1 |
CHOI K W, KIM Y K, JEON H J. Comorbid anxiety and depression: clinical and conceptual consideration and transdiagnostic treatment[J]. Adv Exp Med Biol, 2020, 1191: 219-235.
|
2 |
TUNG Y J, LO K K H, HO R C M, et al. Prevalence of depression among nursing students: a systematic review and meta-analysis[J]. Nurse Educ Today, 2018, 63: 119-129.
|
3 |
QIN X Z, WANG S Y, Hsieh C R. The prevalence of depression and depressive symptoms among adults in China: estimation based on a national household survey[J]. Chin Econom Rev, 2018, 51(2018): 271-282.
|
4 |
ZHANG Y, HUGHSON F M. Chaperoning SNARE folding and assembly[J]. Annu Rev Biochem, 2021, 90: 581-603.
|
5 |
KHVOTCHEV M, SOLOVIEV M. SNARE modulators and SNARE mimetic peptides[J]. Biomolecules, 2022, 12(12): 1779.
|
6 |
ZHOU B T, ZHU Z Q, RANSOM B R, et al. Oligodendrocyte lineage cells and depression[J]. Mol Psychiatry, 2021, 26: 103-117.
|
7 |
JIA X N, GAO Z H, HU H L. Microglia in depression: current perspectives[J]. Sci China Life Sci, 2021, 64(6): 911-925.
|
8 |
MANGO D, LEDONNE A. Updates on the physiopathology of group Ⅰ metabotropic glutamate receptors (mGluRⅠ)-dependent long-term depression[J]. Cells, 2023, 12 (12): 1588.
|
9 |
YOON S, IQBAL H, KIM S M, et al. Phytochemicals that act on synaptic plasticity as potential prophylaxis against stress-induced depressive disorder[J]. Biomol Ther (Seoul), 2023, 31(2): 148-160.
|
10 |
BAGWE P V, DESHPANDE R D, JUHASZ G, et al. Uncovering the significance of STEP61 in Alzheimer′s disease: structure, substrates, and interactome[J]. Cell Mol Neurobiol, 2023, 43(7): 3099-3113.
|
11 |
SÖLLNER T, WHITEHEART S W, BRUNNER M, et al. SNAP receptors implicated in vesicle targeting and fusion[J]. Nature, 1993, 362: 318-324.
|
12 |
MISURA K M S, SCHELLER R H, WEIS W I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex[J]. Nature, 2000, 404: 355-362.
|
13 |
WARNER H, MAHAJAN S, VAN DEN BOGAART G. Rerouting trafficking circuits through posttranslational SNARE modifications[J]. J Cell Sci, 2022, 135(16): jcs260112.
|
14 |
PARLATI F, MCNEW J A, FUKUDA R, et al. Topological restriction of SNARE-dependent membrane fusion[J]. Nature, 2000, 407: 194-198.
|
15 |
CHERNOMORDIK L V, KOZLOV M M. Mechanics of membrane fusion[J]. Nat Struct Mol Biol, 2008, 15: 675-683.
|
16 |
SÜDHOF T C, ROTHMAN J E. Membrane fusion: grappling with SNARE and SM proteins[J]. Science, 2009, 323(5913): 474-477.
|
17 |
BRUNGER A T, LEITZ J, ZHOU Q, et al. Ca2+-triggered synaptic vesicle fusion initiated by release of inhibition[J]. Trends Cell Biol, 2018, 28(8): 631-645.
|
18 |
WEI Z, WEI M, YANG X, et al. Synaptic secretion and beyond: targeting synapse and neurotransmitters to treat neurodegenerative diseases[J]. Oxid Med Cell Longev, 2022, 2022: 9176923.
|
19 |
ITAKURA E, KISHI-ITAKURA C, MIZUSHIMA N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 2012, 151(6): 1256-1269.
|
20 |
BOOMS A, COETZEE G A. Functions of intracellular alpha-synuclein in microglia: implications for Parkinson′s disease risk[J]. Front Cell Neurosci, 2021, 15: 759571.
|
21 |
AYALEW M, LE-NICULESCU H, LEVEY D F, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction[J]. Mol Psychiatry, 2012, 17(9): 887-905.
|
22 |
KATAOKA M, YAMAMORI S, SUZUKI E, et al. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse[J]. PLoS One, 2011, 6(9): e25158.
|
23 |
DURIC V, BANASR M, STOCKMEIER C A, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects[J]. Int J Neuropsychopharmacol, 2013, 16(1): 69-82.
|
24 |
LEUNG E, LAU E W, LIANG A D, et al. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies[J]. Mol Psychiatry, 2022, 27: 1362-1372.
|
25 |
NAJERA K, FAGAN B M, THOMPSON P M. SNAP-25 in major psychiatric disorders: a review[J]. Neuroscience, 2019, 420: 79-85.
|
26 |
MALKI K, KEERS R, TOSTO M G, et al. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder[J]. BMC Med, 2014, 12: 73.
|
27 |
GAO Y, BEZCHLIBNYK Y B, SUN X, et al. Effects of restraint stress on the expression of proteins involved in synaptic vesicle exocytosis in the hippocampus[J]. Neuroscience, 2006, 141(3): 1139-1148.
|
28 |
GUO L, ZHU Z, WANG G, et al. MicroRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens[J]. J Biol Chem, 2020, 295(20): 6831-6848.
|
29 |
BIELER M, HUSSAIN S, DAALAND E S B, et al. Changes in concentrations of NMDA receptor subunit GluN2B, Arc and syntaxin-1 in dorsal hippocampus Schaffer collateral synapses in a rat learned helplessness model of depression[J]. J Comp Neurol, 2021, 529(12): 3194-3205.
|
30 |
BONANNO G, GIAMBELLI R, RAITERI L, et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus[J]. J Neurosci, 2005, 25(13): 3270-3279.
|
31 |
ARAYA-CALLÍS C, HIEMKE C, ABUMARIA N, et al. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus[J]. Psychopharmacology, 2012, 224(1): 209-222.
|
32 |
LI N, WANG H, XIN S, et al. Confinement induces oxidative damage and synaptic dysfunction in mice[J]. Front Physiol, 2022, 13: 999574.
|
33 |
LI N, GAO Y, ZHANG Y, et al. An integrated multi-level analysis reveals learning-memory deficits and synaptic dysfunction in the rat model exposure to austere environment[J]. J Proteomics, 2023, 279: 104887.
|
34 |
CAO Y J, WANG Q, ZHENG X X, et al. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress[J]. J Affect Disord, 2018, 235: 374-383.
|
35 |
PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
|
36 |
LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541: 481-487.
|
37 |
SCHWARZ Y, ZHAO N, KIRCHHOFF F, et al. Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways[J]. Nat Neurosci, 2017, 20: 1529-1539.
|
38 |
TAKATA-TSUJI F, CHOUNLAMOUNTRI N, DO L D, et al. Microglia modulate gliotransmission through the regulation of VAMP2 proteins in astrocytes[J]. Glia, 2021, 69(1): 61-72.
|
39 |
DURKEE C A, ARAQUE A. Diversity and specificity of astrocyte-neuron communication[J]. Neuroscience, 2019, 396: 73-78.
|
40 |
MIELNICKA A, MICHALUK P. Exocytosis in astrocytes[J]. Biomolecules, 2021, 11(9): 1367.
|
41 |
LEE C W, WU H F, CHU M C, et al. Mechanism of intermittent Theta-burst stimulation in synaptic pathology in the prefrontal cortex in an antidepressant-resistant depression rat model[J]. Cereb Cortex, 2021, 31(1): 575-590.
|