上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (6): 779-787.doi: 10.3969/j.issn.1674-8115.2024.06.014
曾德洁1,2(), 陈增辉1, 丁乾坤1, 孙夏青1, 孙琪1, 赵士兵1,2()
收稿日期:
2024-01-04
接受日期:
2024-03-19
出版日期:
2024-06-28
发布日期:
2024-06-28
通讯作者:
赵士兵
E-mail:zengdejie@stu.bbmc.edu.cn;zhaoshibing523@163.com
作者简介:
曾德洁(1995—),女,硕士生;电子信箱:zengdejie@stu.bbmc.edu.cn。
基金资助:
ZENG Dejie1,2(), CHEN Zenghui1, DING Qiankun1, SUN Xiaqing1, SUN Qi1, ZHAO Shibing1,2()
Received:
2024-01-04
Accepted:
2024-03-19
Online:
2024-06-28
Published:
2024-06-28
Contact:
ZHAO Shibing
E-mail:zengdejie@stu.bbmc.edu.cn;zhaoshibing523@163.com
Supported by:
摘要:
神经发育障碍(neurodevelopmental disorders,NDDs)是由于多种遗传性或者获得性病因导致的可影响认知、运动、社会适应能力、行为等的慢性发育性脑功能障碍性疾病。天然多糖是生物体合成的,位于细胞壁、细胞内、细胞间以及分泌至细胞外的生物大分子,是生命活动的必需成分。天然多糖在神经性疾病中发挥重要作用,主要通过抗氧化应激、抗神经细胞凋亡、抗神经炎症、抗兴奋性氨基酸毒性和调节脑-肠轴等途径,改善神经性疾病引起的行为异常和临床症状。该文综述17种来自植物和真菌的生物活性多糖在神经性疾病中的干预作用,旨在为NDDs疾病的研究及治疗提供新的思路。
中图分类号:
曾德洁, 陈增辉, 丁乾坤, 孙夏青, 孙琪, 赵士兵. 天然来源的多糖在干预神经发育障碍中的应用前景[J]. 上海交通大学学报(医学版), 2024, 44(6): 779-787.
ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787.
1 | MORRIS-ROSENDAHL D J, CROCQ M A. Neurodevelopmental disorders: the history and future of a diagnostic concept[J]. Dialogues Clin Neurosci, 2020, 22(1): 65-72. |
2 | CORTESE S, SONG M J, FARHAT L C, et al. Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data, with critical re-analysis, from the Global Burden of Disease study[J]. Mol Psychiatry, 2023, 28: 4823-4830. |
3 | ZEIDAN J, FOMBONNE E, SCORAH J, et al. Global prevalence of autism: a systematic review update[J]. Autism Res, 2022, 15(5):778-790. |
4 | JOHNSON K A, WORBE Y, FOOTE K D, et al. Tourette syndrome: clinical features, pathophysiology, and treatment[J]. Lancet Neurol, 2023, 22(2): 147-158. |
5 | ZABLOTSKY B, BLACK L I, MAENNER M J, et al. Prevalence and trends of developmental disabilities among children in the United States: 2009‒2017[J]. Pediatrics, 2019, 144(4): e20190811. |
6 | MAENNER M, WARREN Z, WILLIAMS A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years : Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020[J]. MMWR Surveill Summ, 2023, 72(SS-2):1-14. |
7 | SUN Q Y, CHENG L, ZENG X X, et al. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis[J]. Int J Biol Macromol, 2020, 164: 1484-1492. |
8 | ZHAO Y, YAN B Y, WANG Z W, et al. Natural polysaccharides with immunomodulatory activities[J]. Mini Rev Med Chem, 2020, 20(2): 96-106. |
9 | MOHAMMED A S A, NAVEED M, JOST N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities)[J]. J Polym Environ, 2021, 29(8): 2359-2371. |
10 | ZHONG J, QIU X, YU Q, et al. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways[J]. Int J Biol Macromol, 2020, 163: 464-475. |
11 | OLASEHINDE T A, MABINYA L V, OLANIRAN A O, et al. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds[J]. Bioact Carbohydr Diet Fibree, 2019, 18: 100182. |
12 | OLASEHINDE T A, MABINYA L V, OLANIRAN A O, et al. Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities[J]. Int J Food Prop, 2019, 22:100-110. |
13 | MANLUSOC J K T, HSIEH C L, HSIEH C Y, et al. Pharmacologic application potentials of sulfated polysaccharide from marine algae[J]. Polymers (Basel), 2019, 11(7): E1163. |
14 | OLASEHINDE T A, OLANIRAN A O, OKOH A I. Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn-induced neuronal damage in HT-22 cells[J]. BMC Complement Med Ther, 2020, 20(1): 251. |
15 | SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21: 363-383. |
16 | BAI L, XU D, ZHOU Y M, et al. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications[J]. Antioxidants (Basel), 2022, 11(12): 2491. |
17 | ABDUL WAHAB S M, JANTAN I, HAQUE M A, et al. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents[J]. Front Pharmacol, 2018, 9: 661. |
18 | KIM W S, KIM Y E, CHO E J, et al. Neuroprotective effect of Annona muricata-derived polysaccharides in neuronal HT22 cell damage induced by hydrogen peroxide[J]. Biosci Biotechnol Biochem, 2020, 84(5): 1001-1012. |
19 | SHI X D, LI O Y, YIN J Y, et al. Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy[J]. Food Chem, 2019, 271:338-344. |
20 | YU W X, LIN C Q, ZHAO Q, et al. Neuroprotection against hydrogen peroxide-induced toxicity by Dictyophora echinovolvata polysaccharide via inhibiting the mitochondria-dependent apoptotic pathway[J]. Biomed Pharmacother, 2017, 88: 569-573. |
21 | CHU Q, ZHANG Y R, CHEN W, et al. Apios americana Medik flowers polysaccharide (AFP) alleviate cyclophosphamide-induced immunosuppression in ICR mice[J]. Int J Biol Macromol, 2020, 144: 829-836. |
22 | CHU Q, CHEN M, SONG D X, et al. Apios americana Medik flowers polysaccharide (AFP-2) attenuates H2O2 induced neurotoxicity in PC12 cells[J]. Int J Biol Macromol, 2019, 123: 1115-1124. |
23 | BYUN E B, CHO E J, KIM Y E, et al. Neuroprotective effect of polysaccharide separated from Perilla frutescens Britton var. acuta Kudo against H2O2-induced oxidative stress in HT22 hippocampus cells[J]. Biosci Biotechnol Biochem, 2018, 82(8): 1344-1358. |
24 | ZHU Y X, DING X, WANG M, et al. Structure and antioxidant activity of a novel polysaccharide derived from Amanita caesarea[J]. Mol Med Rep, 2016, 14(4): 3947-3954. |
25 | LI Z P, CHEN X, ZHANG Y F, et al. Protective roles of Amanita caesarea polysaccharides against Alzheimer's disease via Nrf2 pathway[J]. Int J Biol Macromol, 2019, 121: 29-37. |
26 | HU W J, LI Z P, WANG W Q, et al. Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in Alzheimer's disease: endoplasmic reticulum stress[J]. Food Funct, 2021, 12(21): 11009-11023. |
27 | WANG J, ZHANG Q B, ZHANG Z S, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica[J]. Int J Biol Macromol, 2008, 42(2): 127-132. |
28 | WANG J, LIU H D, JIN W H, et al. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron[J]. Int J Biol Macromol, 2016, 82: 878-883. |
29 | LIU H D, WANG J, ZHANG Q B, et al. Protective effect of fucoidan against MPP+-induced SH-SY5Y cells apoptosis by affecting the PI3K/AKT pathway[J]. Mar Drugs, 2020, 18(6): E333. |
30 | JIANG W, CHEN L, ZHENG S K. Global reprogramming of apoptosis-related genes during brain development[J]. Cells, 2021, 10(11): 2901. |
31 | YUAN J Y, AMIN P, OFENGEIM D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nat Rev Neurosci, 2019, 20: 19-33. |
32 | HE Y F, XU W Z, QIN Y M. Structural characterization and neuroprotective effect of a polysaccharide from Corydalis yanhusuo[J]. Int J Biol Macromol. 2020, 157: 759-768. |
33 | LI Y J, GUAN S W, LIU C, et al. Neuroprotective effects of Coptis chinensis Franch polysaccharide on amyloid-beta (Aβ)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer's disease (AD)[J]. Int J Biol Macromol, 2018, 113: 991-995. |
34 | LI Y J, WANG B M, LIU C, et al. Inhibiting c-Jun N-terminal kinase (JNK)-mediated apoptotic signaling pathway in PC12 cells by a polysaccharide (CCP) from Coptis chinensis against amyloid-β (Aβ)-induced neurotoxicity[J]. Int J Biol Macromol, 2019, 134:565-574. |
35 | CHEN J C, LI L, ZHANG X, et al. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge[J]. Int J Biol Macromol, 2023, 236: 123843. |
36 | ZHANG S Z, ZHANG Q, AN L J, et al. A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects[J]. Carbohydr Polym, 2020, 229: 115477. |
37 | SU C, LI N, REN R R, et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum[J]. Molecules, 2021, 26(20): 6249. |
38 | JIA D, RAO C G, XUE S X, et al. Purification, characterization and neuroprotective effects of a polysaccharide from Gynostemma pentaphyllum[J]. Carbohydr Polym, 2015, 122: 93-100. |
39 | YANG Q Q, ZHOU J W. Neuroinflammation in the central nervous system: symphony of glial cells[J]. Glia, 2019, 67(6): 1017-1035. |
40 | ABE N, NISHIHARA T, YOROZUYA T, et al. Microglia and macrophages in the pathological central and peripheral nervous systems[J]. Cells, 2020, 9(9): E2132. |
41 | GILHUS N E, DEUSCHL G. Neuroinflammation: a common thread in neurological disorders[J]. Nat Rev Neurol, 2019, 15: 429-430. |
42 | ZHANG F H, WANG Z M, LIU Y T, et al. Bioactivities of serotonin transporter mediate antidepressant effects of Acorus tatarinowii Schott[J]. J Ethnopharmacol, 2019, 241: 111967. |
43 | YAN C Y, ZHONG J, ZHANG Q, et al. Acorus tatarinowii polysaccharides and their preparation and application: CN202010110367.4[P]. 2020-02-21. |
44 | XU M J, YAN T X, FAN K Y, et al. Polysaccharide of Schisandra Chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer's disease[J]. J Ethnopharmacol, 2019, 237: 354-365. |
45 | XU M J, WANG J Y, ZHANG X Y, et al. Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling[J]. J Ethnopharmacol, 2020, 256: 112798. |
46 | CHEN Q L, TANG H L, ZHA Z Q, et al. β-D-glucan from Antrodia camphorata ameliorates LPS-induced inflammation and ROS production in human hepatocytes[J]. Int J Biol Macromol, 2017, 104: 768-777. |
47 | GARIBOLDI M B, MARRAS E, FERRARIO N, et al. Anti-cancer potential of edible/medicinal mushrooms in breast cancer[J]. Int J Mol Sci, 2023, 24(12): 10120. |
48 | HAN C Y, GUO L, YANG Y, et al. Study on Antrodia camphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome[J]. Phytother Res, 2019, 33(9): 2288-2297. |
49 | HAN C Y, SHEN H P, YANG Y, et al. Antrodia camphorata polysaccharide resists 6-OHDA-induced dopaminergic neuronal damage by inhibiting ROS-NLRP3 activation[J]. Brain Behav, 2020, 10(11): e01824. |
50 | ARMADA-MOREIRA A, GOMES J I, PINA C C, et al. Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases[J]. Front Cell Neurosci, 2020, 14: 90. |
51 | QIANG X, XIA T, GENG B B, et al. Bioactive components of Lycium barbarum and deep-processing fermentation products[J]. Molecules. 2023, 28(24):8044. |
52 | KOU L, DU M Z, ZHANG C P, et al. Polysaccharide purified from Lycium barbarum protects differentiated PC12 cells against L-Glu-induced toxicity via the mitochondria-associated pathway[J]. Mol Med Rep, 2017, 16(4): 5533-5540. |
53 | YANG Y, LI J H, HONG Q, et al. Polysaccharides from Hericium erinaceus fruiting bodies: structural characterization, immunomodulatory activity and mechanism[J]. Nutrients, 2022, 14(18): 3721. |
54 | ZHANG J R, AN S S, HU W J, et al. The neuroprotective properties of Hericium erinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer's disease mouse model[J]. Int J Mol Sci, 2016, 17(11): E1810. |
55 | FENTON T M, JØRGENSEN P B, NISS K, et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity[J]. Immunity, 2020, 52(3): 557-570. |
56 | WANG Q W, YANG Q Y, LIU X Y. The microbiota-gut-brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775. |
57 | LI S, HU J L, YAO H Y Y, et al. Interaction between four galactans with different structural characteristics and gut microbiota[J]. Crit Rev Food Sci Nutr, 2023, 63(19): 3653-3663. |
58 | ZHU Y Y, DONG L E, HUANG L, et al. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats[J]. J Funct Foods, 2020, 69: 103939. |
59 | HUANG J Q, WANG Q, XU Q X, et al. In vitro fermentation of O-acetyl-arabinoxylan from bamboo shavings by human colonic microbiota[J]. Int J Biol Macromol, 2019, 125: 27-34. |
60 | FENG H B, FAN J, SONG Z H, et al. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides[J]. Carbohydr Polym, 2016, 136: 803-811. |
61 | WANG C Y, TANG L, HE J W, et al. Ethnobotany, phytochemistry and pharmacological properties of Eucommia ulmoides: a review[J]. Am J Chin Med, 2019, 47(2): 259-300. |
62 | SUN P H, WANG M L, LI Z N, et al. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism[J]. Theranostics, 2022, 12(8): 3637-3655. |
63 | SAVITZ J. The kynurenine pathway: a finger in every pie[J]. Mol Psychiatry, 2020, 25: 131-147. |
64 | SHENG K J, WANG C L, CHEN B T, et al. Recent advances in polysaccharides from Lentinus edodes (Berk.): isolation, structures and bioactivities[J]. Food Chem, 2021, 358: 129883. |
65 | PAN W, JIANG P F, ZHAO J X, et al. β-Glucan from Lentinula edodes prevents cognitive impairments in high-fat diet-induced obese mice: involvement of colon-brain axis[J]. J Transl Med, 2021, 19(1): 54. |
66 | GUO T Y, AKAN O D, LUO F J, et al. Dietary polysaccharides exert biological functions via epigenetic regulations: advance and prospectives[J]. Crit Rev Food Sci Nutr, 2023, 63(1): 114-124. |
[1] | 陈铭豪, 刘沛雨, 王旋, 吴一想, 江玉瑾, 张朝阳, 张敬法. 糖尿病视网膜病变的药物治疗研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 822-829. |
[2] | 贾君杰, 邢海帆, 张群子, 刘奇烨, 汪年松, 范瑛. 缺氧诱导因子-1α抑 制剂YC-1改善糖尿病肾病小鼠肾脏损伤的机制研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1089-1098. |
[3] | 金芳全, 樊成虎, 唐晓栋, 陈彦同, 齐兵献. 线粒体功能障碍与骨质疏松症相关性研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 761-767. |
[4] | 陆若玉, 康文慧, 赵安达, 陆兆辉, 李生慧. 褪黑素与妊娠期高血压疾病的关系研究进展[J]. 上海交通大学学报(医学版), 2023, 43(10): 1297-1303. |
[5] | 张桓瑜, 江旖婷, 朱晓晨, 何智妍, 周薇, 宋忠臣. 牙龈素提取物对小鼠脑神经炎症的影响[J]. 上海交通大学学报(医学版), 2022, 42(5): 570-577. |
[6] | 赵久红, 童佳婷, 沈郅珺, 吕叶辉. 环状RNA与氧化应激互作机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 393-399. |
[7] | 孙金丽, 宋纬巍, 许鸣, 李井泉. 亚砷酸钠暴露14周诱导肝癌细胞LM3氧化损伤及恶性迁移的研究[J]. 上海交通大学学报(医学版), 2022, 42(12): 1677-1684. |
[8] | 毛久昂, 翁震, 钮晓音, 何杨, 王振欣. Tmprss6基因对小鼠放射性肠损伤的影响[J]. 上海交通大学学报(医学版), 2021, 41(9): 1175-1182. |
[9] | 杨润泽, 许文宁, 郑火亮, 蒋盛旦. 脐静脉内皮细胞外泌体对炎症因子刺激下前软骨细胞凋亡的影响[J]. 上海交通大学学报(医学版), 2021, 41(2): 147-153. |
[10] | 吴静, 李学义, 陈京红, 王泽剑. 抑郁模型小鼠海马中胆汁酸受体变化的研究[J]. 上海交通大学学报(医学版), 2021, 41(12): 1628-1634. |
[11] | 胡 苡1, 2,周 薇2,宋忠臣1, 2. 实验性牙周炎大鼠脑内外的炎性改变[J]. 上海交通大学学报(医学版), 2020, 40(12): 1579-1584. |
[12] | 和 斌,李祺越,洪 岭,伍园园,滕晓明,唐传玲. SIRT1对H2O2诱导的人卵巢颗粒细胞氧化应激损伤的影响[J]. 上海交通大学学报(医学版), 2020, 40(12): 1591-1597. |
[13] | 王立峰,陈俊杰,李永宁,王 玲,王 磊,李雪娇. 姜黄素对心脏停搏/心肺复苏大鼠肠黏膜损伤的抑制作用[J]. 上海交通大学学报(医学版), 2020, 40(12): 1607-1613. |
[14] | 陆海洋,赵维莅. 胃肠道微生物在肿瘤发生中的作用[J]. 上海交通大学学报(医学版), 2019, 39(9): 1083-. |
[15] | 杨双双 1*,高天行 2*,何萱 1,张瑞 1,张永芳 1. 知母皂苷元对 H 2O2损伤 SH-SY5Y细胞中脑源性神经营养 因子的调控及机制研究[J]. 上海交通大学学报(医学版), 2019, 39(6): 578-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||