Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (9): 1336-1346.doi: 10.3969/j.issn.1674-8115.2022.09.022
• Public health • Previous Articles
WANG Jie1,2(), WU Hui3(
), LU Lingpeng4, YANG Kefeng1,2,5, ZHU Jie6, ZHOU Hengyi1,2, YAO Die1,2, GAO Ya1,2, FENG Yuting1,2, LIU Yuhong7(
), JIA Jie1,2,5(
)
Received:
2022-05-18
Accepted:
2022-08-19
Online:
2022-09-28
Published:
2022-09-28
Contact:
LIU Yuhong,JIA Jie
E-mail:wangjie_1111@alumni.sjtu.edu.cn;liuyuhong0121@126.com;jie.jia@shsmu.edu.cn
Supported by:
CLC Number:
WANG Jie, WU Hui, LU Lingpeng, YANG Kefeng, ZHU Jie, ZHOU Hengyi, YAO Die, GAO Ya, FENG Yuting, LIU Yuhong, JIA Jie. Dynamic changes in gut microbiota of women with gestational diabetes mellitus and the correlation with blood glucose, blood lipid and diet[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1336-1346.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.09.022
Item | GDM group (n=30) | Control group (n=48) | P value |
---|---|---|---|
Age/year | 29.90±4.21 | 28.90±4.15 | 0.304 |
Pre-pregnancy BMI/(kg·m-2) | 23.01 (20.36, 24.92) | 21.20 (19.31, 23,73) | 0.216 |
Weight gain/kg | 15.74±4.80 | 12.63±5.77 | 0.012 |
Gravidity/n (%) | 0.777 | ||
1 | 14 (46.67) | 24 (50.00) | |
2 | 7 (23.33) | 13 (27.08) | |
≥3 | 9 (30.00) | 11 (22.92) | |
Parity/n (%) | 0.277 | ||
Nulliparous | 15 (50.00) | 30 (62.50) | |
Multiparous | 15 (50.00) | 18 (37.50) | |
Educational background/n (%) | 0.901 | ||
Middle school or below | 5 (16.67) | 7 (14.58) | |
High school | 6 (20.00) | 8 (16.67) | |
College | 17 (56.67) | 31 (64.58) | |
Graduate or above | 2 (6.67) | 2 (4.17) | |
FBG/(mmol·L-1) | 5.00±0.57 | 4.35±0.22 | 0.000 |
Blood glucose level at OGTT/(mmol·L-1) | |||
1 h | 10.01±1.62 | 7.29±1.41 | 0.000 |
2 h | 7.75±1.80 | 6.07±0.90 | 0.000 |
TC/(mmol·L-1) | 5.27±0.85 | 5.54±1.03 | 0.239 |
TAG/(mmol·L-1) | 3.00±1.32 | 2.12±0.67 | 0.003 |
HDL/(mmol·L-1) | 1.83±0.28 | 2.00±0.28 | 0.014 |
LDL/(mmol·L-1) | 2.67±0.65 | 3.07±0.90 | 0.040 |
Tab 1 Comparison of demographic information and blood biochemical indicators between the GDM group and control group
Item | GDM group (n=30) | Control group (n=48) | P value |
---|---|---|---|
Age/year | 29.90±4.21 | 28.90±4.15 | 0.304 |
Pre-pregnancy BMI/(kg·m-2) | 23.01 (20.36, 24.92) | 21.20 (19.31, 23,73) | 0.216 |
Weight gain/kg | 15.74±4.80 | 12.63±5.77 | 0.012 |
Gravidity/n (%) | 0.777 | ||
1 | 14 (46.67) | 24 (50.00) | |
2 | 7 (23.33) | 13 (27.08) | |
≥3 | 9 (30.00) | 11 (22.92) | |
Parity/n (%) | 0.277 | ||
Nulliparous | 15 (50.00) | 30 (62.50) | |
Multiparous | 15 (50.00) | 18 (37.50) | |
Educational background/n (%) | 0.901 | ||
Middle school or below | 5 (16.67) | 7 (14.58) | |
High school | 6 (20.00) | 8 (16.67) | |
College | 17 (56.67) | 31 (64.58) | |
Graduate or above | 2 (6.67) | 2 (4.17) | |
FBG/(mmol·L-1) | 5.00±0.57 | 4.35±0.22 | 0.000 |
Blood glucose level at OGTT/(mmol·L-1) | |||
1 h | 10.01±1.62 | 7.29±1.41 | 0.000 |
2 h | 7.75±1.80 | 6.07±0.90 | 0.000 |
TC/(mmol·L-1) | 5.27±0.85 | 5.54±1.03 | 0.239 |
TAG/(mmol·L-1) | 3.00±1.32 | 2.12±0.67 | 0.003 |
HDL/(mmol·L-1) | 1.83±0.28 | 2.00±0.28 | 0.014 |
LDL/(mmol·L-1) | 2.67±0.65 | 3.07±0.90 | 0.040 |
Item | GDM group (n=30) | Control group (n=48) | P value |
---|---|---|---|
Nutrient intake | |||
Energy/(J·d-1) | 6 425 408.09 (5 415 822.49, 8 290 414.36) | 6 510 632.03 (5 251 444.09, 7 870 154.84) | 0.475 |
Protein/(g·d-1) | 59.20 (51.30, 77.50) | 59.70 (47.15, 71.60) | 0.853 |
Fat/(g·d-1) | 49.40 (34.50, 55.10) | 34.90 (26.10, 47.10) | 0.046 |
Carbohydrate/(g·d-1) | 197.40 (178.10, 268.00) | 211.80 (184.20, 249.20) | 0.951 |
Fiber/(g·d-1) | 16.60 (14.40, 21.70) | 17.00 (13.20, 21.80) | 0.622 |
BCAA/(mg·d-1) | 6 340.50 (5 417.60, 7 442.50) | 5 952.00 (4 212.35, 7 364.00) | 0.983 |
PUFA/(g·d-1) | 6.90 (2.50, 8.90) | 4.30 (2.70, 6.80) | 0.363 |
MUFA/(g·d-1) | 5.70 (4.30, 7.90) | 4.90 (3.10, 7.30) | 0.317 |
SFA/(g·d-1) | 7.60 (5.50, 8.60) | 7.20 (5.65, 8.70) | 0.914 |
Food intake/(g·d-1) | |||
Staple | 165.40 (140.70, 196.20) | 179.00 (128.60, 251.25) | 0.593 |
Vegetable | 437.60 (335.90, 779.00) | 639.30 (445.80, 819.10) | 0.072 |
Fruit | 506.70 (394.80, 628.60) | 437.10 (294.30, 646.40) | 0.319 |
Egg | 60.00 (30.00, 64.00) | 60.00 (38.60, 90.00) | 0.374 |
Meat | 50.10 (34.30, 67.10) | 35.70 (21.50, 56.00) | 0.111 |
Fish | 41.40 (13.00, 78.60) | 42.90 (28.25, 78.60) | 0.583 |
Bean | 77.70 (21.40, 131.40) | 50.00 (22.60, 97.60) | 0.655 |
Dairy | 271.40 (200.00, 320.00) | 250.00 (188.00, 305.95) | 0.701 |
Dried fruit | 16.00 (6.40, 30.00) | 14.30 (3.80, 20.00) | 0.318 |
Tab 2 Comparison of dietary intake between the GDM group and control group
Item | GDM group (n=30) | Control group (n=48) | P value |
---|---|---|---|
Nutrient intake | |||
Energy/(J·d-1) | 6 425 408.09 (5 415 822.49, 8 290 414.36) | 6 510 632.03 (5 251 444.09, 7 870 154.84) | 0.475 |
Protein/(g·d-1) | 59.20 (51.30, 77.50) | 59.70 (47.15, 71.60) | 0.853 |
Fat/(g·d-1) | 49.40 (34.50, 55.10) | 34.90 (26.10, 47.10) | 0.046 |
Carbohydrate/(g·d-1) | 197.40 (178.10, 268.00) | 211.80 (184.20, 249.20) | 0.951 |
Fiber/(g·d-1) | 16.60 (14.40, 21.70) | 17.00 (13.20, 21.80) | 0.622 |
BCAA/(mg·d-1) | 6 340.50 (5 417.60, 7 442.50) | 5 952.00 (4 212.35, 7 364.00) | 0.983 |
PUFA/(g·d-1) | 6.90 (2.50, 8.90) | 4.30 (2.70, 6.80) | 0.363 |
MUFA/(g·d-1) | 5.70 (4.30, 7.90) | 4.90 (3.10, 7.30) | 0.317 |
SFA/(g·d-1) | 7.60 (5.50, 8.60) | 7.20 (5.65, 8.70) | 0.914 |
Food intake/(g·d-1) | |||
Staple | 165.40 (140.70, 196.20) | 179.00 (128.60, 251.25) | 0.593 |
Vegetable | 437.60 (335.90, 779.00) | 639.30 (445.80, 819.10) | 0.072 |
Fruit | 506.70 (394.80, 628.60) | 437.10 (294.30, 646.40) | 0.319 |
Egg | 60.00 (30.00, 64.00) | 60.00 (38.60, 90.00) | 0.374 |
Meat | 50.10 (34.30, 67.10) | 35.70 (21.50, 56.00) | 0.111 |
Fish | 41.40 (13.00, 78.60) | 42.90 (28.25, 78.60) | 0.583 |
Bean | 77.70 (21.40, 131.40) | 50.00 (22.60, 97.60) | 0.655 |
Dairy | 271.40 (200.00, 320.00) | 250.00 (188.00, 305.95) | 0.701 |
Dried fruit | 16.00 (6.40, 30.00) | 14.30 (3.80, 20.00) | 0.318 |
Fig 1 Comparison of gut bacterial α-diversity between the GDM group and control group in the second trimester (T2) and the third trimester (T3) of pregnancy
Fig 2 Comparison of gut bacterial β-diversity between the GDM group and control group in the second trimester (T2) and the third trimester (T3) of pregnancy
Fig 3 Heatmap clustering analysis of the top 20 gut bacterial genera in the women of the two groups in the second trimester (T2) and the third trimester (T3) of pregnancy
Fig 4 Difference test of the top 20 gut bacterial genera in the women of the two groups in the second trimester (T2) and the third trimester (T3) of pregnancy
Fig 6 Spearman correlation analysis between the environmental factors and the family level (A) and the genus level (B) of the gut microbiota (top 20) of the pregnant women in the second trimester (T2) of pregnancy
1 | American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2010, 33(Suppl 1): S62-69. |
2 | ZHU Y Y, ZHANG C L. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective[J]. Curr Diab Rep, 2016, 16(1): 7. |
3 | GAO C H, SUN X, LU L, et al. Prevalence of gestational diabetes mellitus in mainland China: a systematic review and meta-analysis[J]. J Diabetes Investig, 2019, 10(1): 154-162. |
4 | DALY B, TOULIS K A, THOMAS N, et al. Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: a population-based cohort study[J]. PLoS Med, 2018, 15(1): e1002488. |
5 | MAHAJAN A, DONOVAN L E, VALLEE R, et al. Evidenced-based nutrition for gestational diabetes mellitus[J]. Curr Diab Rep, 2019, 19(10): 94. |
6 | ARRIETA M C, STIEMSMA L T, DIMITRIU P A, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma[J]. Sci Transl Med, 2015, 7(307): 307ra152. |
7 | STANISLAWSKI M A, DABELEA D, WAGNER B D, et al. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort[J]. mBio, 2018, 9(5): e01751-e01718. |
8 | CRUSELL M K W, HANSEN T H, NIELSEN T, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum[J]. Microbiome, 2018, 6(1): 89. |
9 | ZHENG W, XU Q, HUANG W Y, et al. Gestational diabetes mellitus is associated with reduced dynamics of gut microbiota during the first half of pregnancy[J]. mSystems, 2020, 5(2): e00109-e00120. |
10 | WANG J F, ZHENG J Y, SHI W Y, et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus[J]. Gut, 2018, 67(9): 1614-1625. |
11 | HUANG L L, THONUSIN C, CHATTIPAKORN N, et al. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review[J]. Eur J Nutr, 2021, 60(5): 2343-2360. |
12 | ROLD L S, BUNDGAARD-NIELSEN C, NIEMANN HOLM-JACOBSEN J, et al. Characteristics of the gut microbiome in women with gestational diabetes mellitus: a systematic review[J]. PLoS One, 2022, 17(1): e0262618. |
13 | 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会妊娠合并糖尿病协作组. 妊娠合并糖尿病诊治指南(2014)[J]. 中华妇产科杂志, 2014, 49(8): 561-569. |
Obstetrics Group of Obsterics and Gynecology Branch of Chinese Medical Association, Gestational Diabetes Mellitus Collaborative Group of Perinatal Medical Branch of Chinese Medical Association. Guidelines for diagnosis and treatment of pregnancy associated with diabetes[J]. Chin J Obstet Gynecol, 2014, 49(8): 561-569. | |
14 | 王蓓, 沈丽蔚, 周丽莉, 等. 孕期胆碱摄入及母婴体内胆碱代谢水平的相关性[J]. 中华围产医学杂志, 2017, 20(11): 790-795. |
WANG B, SHEN L W, ZHOU L L, et al. Association between choline intake during pregnancy and choline metabolism in parturients and infants[J]. Chin J Perinat Med, 2017, 20(11): 790-795. | |
15 | JIA J, XUN P C, WANG X L, et al. Impact of postnatal antibiotics and parenteral nutrition on the gut microbiota in preterm infants during early life[J]. JPEN J Parenter Enteral Nutr, 2020, 44(4): 639-654. |
16 | CORTEZ R V, TADDEI C R, SPARVOLI L G, et al. Microbiome and its relation to gestational diabetes[J]. Endocrine, 2019, 64(2): 254-264. |
17 | FERROCINO I, PONZO V, GAMBINO R, et al. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM)[J]. Sci Rep, 2018, 8(1): 12216. |
18 | MEDICI DUALIB P, OGASSAVARA J, MATTAR R, et al. Gut microbiota and gestational diabetes mellitus: a systematic review[J]. Diabetes Res Clin Pract, 2021, 180: 109078. |
19 | LIU H, PAN L L, LV S T, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia[J]. Front Physiol, 2019, 10: 1015. |
20 | TAN J, MCKENZIE C, POTAMITIS M, et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol, 2014, 121: 91-119. |
21 | VITAL M, KARCH A, PIEPER D H. Colonic butyrate-producing communities in humans: an overview using omics data[J]. mSystems, 2017, 2(6): e00130-e00117. |
22 | ZHANG X Y, SHEN D Q, FANG Z W, et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8(8): e71108. |
23 | BORGO F, GARBOSSA S, RIVA A, et al. Body mass index and sex affect diverse microbial niches within the gut[J]. Front Microbiol, 2018, 9: 213. |
24 | STRAUB T J, CHOU W C, MANSON A L, et al. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections[J]. BMC Microbiol, 2021, 21(1): 53. |
25 | MANCO M, PUTIGNANI L, BOTTAZZO G F. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk[J]. Endocr Rev, 2010, 31(6): 817-844. |
26 | CANI P D, NEYRINCK A M, FAVA F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2374-2383. |
[1] | LU Yu, WANG Hao, BA Qian. Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 939-944. |
[2] | WU Ya, YIN Jun. Research progress of ketogenic diet regulating intestinal microbiome in the treatment of diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 545-550. |
[3] | Qin GU, Yingqian XIA, Yiqing ZHU, Liying MA, Lei QU, Wenguang SUN. Analysis of the effects of individualized one-day outpatient diet guidance on glycemic control, body weight gain rate and pregnancy outcome in pregnant women with gestational diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 185-191. |
[4] | Yihuan WANG, Ruokun LI, Huanhuan CHONG, Fuhua YAN. Research progress of Gd-EOB-DTPA-enhanced magnetic resonance imaging in the evaluation of biological behavior of hepatocellular carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 130-134. |
[5] | Dan WU, Li-ping GE. Research progress of DNA methylation in gestational diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1120-1124. |
[6] | Ying-dan ZHANG, Zhen WANG. Research progress of the role of gut microbiota in the pathogenesis and treatment of obsessive-compulsive disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 967-971. |
[7] | Yue-hua TU, Xiao-jin WANG, Bing-shun WANG. Effects of individualized nutritional standard meal intervention on the prevention of gestational diabetes in overweight and obese pregnant women [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 360-365. |
[8] | Cheng LI, Ming-liang ZHANG, Ling-wen YING, Jiao-rong SU, Rui TAO, Xia YU, Yu-qian BAO, Jian ZHOU. Establishment of continuous glucose monitoring in mice and multiscale entropy analysis of glucose time series [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 134-139. |
[9] | Qing LIU, Wen CAI, Rui-qing ZHANG, Cong LU, Jia-rong ZHANG, Xian-ming XU. Value of pregnancy lipid tolerance test in predicting risk of gestational diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 210-216. |
[10] | Wen-hui XU, Jing BIAN, Lei-zhen ZHENG. Research progress of the relationship between high-fat diet and colorectal cancer and its prevention and treatment countermeasures [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1514-1517. |
[11] | Ya-jie ZHU, Hui LIN, Xi CHEN, Yi-ran ZHAO, Xin-mei LIU, He-feng HUANG. Change of cortisol level in umbilical cord blood of neonates delivered by gestational diabetes mellitus mothers and its influence on offspring health [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 49-54. |
[12] | KANG Jian-hua1, LI Ming-jie1, LUAN Pei-pei2, CHEN Yuan-wen3, PENG Wen-hui2, JIAN Wei-xia1. Establishment of non-alcoholic steatohepatitis mouse model induced by Western diet combined with low-dose carbon tetrachloride [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 590-597. |
[13] | GUO Yi-qiong, WU Qiong, WU Ya-ting, GAO Lu-lu, YANG Jian-jun. Effect of Lycium barbarum polysaccharide and aerobic exercise on rats with non-alcoholic fatty liver disease and its mechanism [J]. , 2020, 40(1): 30-. |
[14] | PENG Rong, YANG Li-jun, DENG Mao-lin. Effects of low-carbohydrate diet on body weight and glycolipid metabolism in normal rats and obese rats [J]. , 2020, 40(1): 44-. |
[15] | CHU Wei-wei, XU Jie-ying, LI Shang, ZHAI Jun-yu, DU Yan-zhi. Gut microbiota of polycystic ovary syndrome model rats induced with dehydroepiandrosterone [J]. , 2019, 39(9): 975-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||