上海交通大学学报(医学版), 2024, 44(11): 1370-1382 doi: 10.3969/j.issn.1674-8115.2024.11.004

论著 · 基础研究

黏蛋白1调控肿瘤细胞恶性特征的功能位点分析

高珂星,, 廖春华, 李昇泽, 马双羽, 黄雷,

上海交通大学基础医学院组织胚胎学与遗传发育学系,上海 200025

Functional site analysis of mucin 1 in regulating the malignant characteristics of tumor cells

GAO Kexing,, LIAO Chunhua, LI Shengze, MA Shuangyu, HUANG Lei,

Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

通讯作者: 黄 雷,电子信箱:leihuang@shsmu.edu.cn

编委: 瞿麟平

收稿日期: 2024-02-11   接受日期: 2024-03-22   网络出版日期: 2024-11-28

基金资助: 国家自然科学基金.  81874197.  82073111
上海市科学技术委员会“科技创新行动计划”生物医药科技支撑专项.  21S11901600

Corresponding authors: HUANG Lei, E-mail:leihuang@shsmu.edu.cn.

Received: 2024-02-11   Accepted: 2024-03-22   Online: 2024-11-28

作者简介 About authors

高珂星(2000—),女,硕士生;电子信箱:xingke_gao@163.com。 E-mail:xingke_gao@163.com

摘要

目的·探究黏蛋白1(mucin 1,MUC1)调控肿瘤细胞增殖、迁移和干性维持的功能位点。方法·通过癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库分析寻找MUC1基因在不同癌症中的突变特征,对不同MUC1突变位点进行分析及定位,并按突变出现频率排序;通过Western blotting筛选出突变频率较高且蛋白稳定表达的MUC1突变体,利用乳腺癌细胞株BT549敲除MUC1细胞系和乳腺非转化细胞株MCF-10A,应用慢病毒表达系统构建MUC1野生型(MUC1-WT)和突变体稳定表达的细胞系。采用免疫荧光法检测不同MUC1突变体的细胞定位。以MUC1-WT为阳性对照、MUC1-AQA功能丧失突变体为阴性对照,对不同突变细胞的肿瘤生物学功能进行分析:通过细胞计数试剂盒-8(cell counting kit-8,CCK-8)及克隆形成实验检测细胞增殖能力;通过划痕实验及Transwell实验检测细胞迁移能力;通过成球实验检测细胞干性。使用PyMOL软件分析MUC1突变体结构定位并通过蛋白质对接软件(ZDOCK Server)进行分子对接分析。结果·在TCGA数据库中得到102个位于MUC1编码区的突变,其中P418S、S251R、V359I、N271S、N465H 5个错义突变出现频率较高且位于非数目可变串联重复序列(non-variable number of tandem repeats,non-VNTR)区域。进一步检测发现MUC1-S251R、N271S、V359I突变体可稳定表达;细胞定位分析发现这3个突变体主要分布于细胞质,同时细胞核也有一定的分布,核质比与野生型未见明显差异。表达不同MUC1突变体细胞的肿瘤生物学功能分析发现:① MUC1-WT高表达显著增强BT549和MCF-10A细胞的增殖能力;与MUC1-WT细胞相比,MUC1-AQA、S251R、N271S突变体细胞增殖能力下降,但MUC1-V359I突变体细胞与MUC1-WT细胞具有相似的增殖能力。② MUC1-WT高表达细胞的迁移能力显著增强,而MUC1-AQA细胞迁移能力减弱。在BT549细胞中,MUC1-S251R与MUC1-V359I突变体细胞迁移能力与MUC1-WT细胞相似,但MUC1-N271S细胞的迁移能力较MUC1-WT细胞降低。在MCF-10A细胞中,MUC1-N271S与MUC1-V359I细胞的迁移能力接近MUC1-WT细胞;但MUC1-S251R细胞较MUC1-WT细胞迁移能力显著下降。③ MUC1-WT高表达显著增强2种细胞的干性,而MUC1-AQA细胞干性丧失;MUC1-N271S、V359I与MUC1-WT具有相似的维持细胞干性的能力,而MUC1-S251R使细胞干性减弱。PyMOL软件分析结果显示,MUC1-N271S及V359I位于海胆精子蛋白-肠激酶-聚集蛋白(sperm protein-enterokinase-agarin,SEA)区域及附近,分别处于loop区及β-折叠处;分子对接结果显示,MUC1-WT及V359I与表皮生长因子受体(epidermal growth factor receptor,EGFR)胞外域形成复合物的稳定性强于MUC1-N271S和S251R,其稳定性排序为V359I>WT>N271S>S251R。结论·MUC1突变体对肿瘤细胞的生物学功能具有不同影响,其对增殖能力影响可能与EGFR信号通路相关。MUC1-V359I与MUC1-WT相似,并未影响MUC1对肿瘤细胞增殖、迁移及干性维持的作用;而MUC1-S251、N271位点可能参与细胞增殖和迁移的信号通路调控且MUC1-S251位点对维持细胞干性较为重要。

关键词: 黏蛋白1 ; 错义突变 ; 肿瘤 ; 细胞增殖 ; 细胞迁移 ; 细胞干性

Abstract

Objective ·To identify the functional motifs of mucin 1 (MUC1) involved in regulating tumor cell proliferation, migration, and stemness maintenance. Methods ·Mutational characteristics of the MUC1 gene across different cancers were identified from The Cancer Genome Atlas (TCGA) database. Various MUC1 mutation sites were analyzed and localized, followed by ranking based on mutation frequency. Western blotting was used to screen high-frequency MUC1 mutants with stable protein expression. BT549 cell line with MUC1 knocked out and MCF-10A cell line were used to stably overexpress MUC1 wild-type (MUC1-WT) and mutants by using lentiviral technology. Immunofluorescence was used to detect the cellular localization of MUC1 mutants. Using MUC1-WT as a positive control and MUC1-AQA, a loss-of-function mutant, as a negative control, the biological functions of different MUC1 mutant cells were analyzed: cell proliferation ability was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay; cell migration ability was evaluated by wound-healing and Transwell assays; cell stemness was examined by sphere formation assay. Structural localization of MUC1 mutants was analyzed by using PyMOL software, and molecular docking analysis was performed by using a protein docking software (ZDOCK Server). ·Results A total of 102 mutations located in the MUC1 coding region were identified in the TCGA database, among which five missense mutations (P418S, S251R, V359I, N271S, and N465H) exhibited higher frequencies and were located in the non-variable number of tandem repeats (non-VNTR) region. Further examination revealed that the MUC1-S251R, N271S, and V359I mutants could be stably expressed. The cellular localization assay indicated that these three mutants predominantly localized in the cytoplasm, but were also presented in the nucleus. The nuclear-to-cytoplasmic ratio showed minimal differences between MUC1-WT and the mutants. Analysis of the tumorigenic biological functions of the cells expressing different MUC1 mutants revealed that: ① High expression of MUC1-WT significantly enhanced the proliferation ability of both BT549 and MCF-10A cells; the proliferation of MUC1-AQA, S251R, and N271S mutant cells was decreased compared to MUC1-WT cells, while MUC1-V359I mutant cells exhibited a similar proliferative profile to MUC1-WT cells. ② The migration ability of MUC1-WT high-expressing cells was significantly enhanced, whereas MUC1-AQA cells demonstrated attenuated migration. In the BT549 cells, the migration ability of MUC1-S251R and V359I cells was similar to that of MUC1-WT cells, whereas MUC1-N271S cells showed reduced migration. In the MCF-10A cells, the migration ability of MUC1-N271S and MUC1-V359I cells was similar to that of MUC1-WT cells, whereas MUC1-S251R cells exhibited significantly decreased migration. ③ Stemness was enhanced in both cell types with high MUC1-WT expression, while MUC1-AQA cells lost stemness; the cells with MUC1-N271S, V359I and MUC1-WT showed comparable maintenance of stemness, whereas MUC1-S251R cells demonstrated compromised stemness. PyMOL software analysis unveiled that MUC1-N271S and V359I were located in or around the sperm protein-enterokinase-agarin (SEA) region, specifically in the loop region and the β-sheet, respectively. The molecular docking analysis revealed that the stability of the complex formed by MUC1-WT or V359I with the extracellular domain of epidermal growth factor receptor (EGFR) surpassed that of MUC1-N271S or S251R, indicating a stability hierarchy of V359I>WT>N271S>S251R. ·Conclusion MUC1 mutants exhibit diverse impacts on the biological functions of tumor cells, with their effects on proliferation correlating with the EGFR signaling pathway. MUC1-V359I is similar to MUC1-WT, indicating a negligible effect on tumor cell proliferation, migration, and stemness maintenance. Conversely, MUC1-S251 and N271 sites may be involved in the regulation of signaling pathways governing cell proliferation and migration and the MUC1-S251 site plays a critical role in maintaining cell stemness.

Keywords: mucin 1 (MUC1) ; missense mutation ; tumor ; cell proliferation ; cell migration ; cell stemness

PDF (8623KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高珂星, 廖春华, 李昇泽, 马双羽, 黄雷. 黏蛋白1调控肿瘤细胞恶性特征的功能位点分析. 上海交通大学学报(医学版)[J], 2024, 44(11): 1370-1382 doi:10.3969/j.issn.1674-8115.2024.11.004

GAO Kexing, LIAO Chunhua, LI Shengze, MA Shuangyu, HUANG Lei. Functional site analysis of mucin 1 in regulating the malignant characteristics of tumor cells. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(11): 1370-1382 doi:10.3969/j.issn.1674-8115.2024.11.004

黏蛋白(mucin,MUC)家族是一类大分子糖蛋白,有21个家族成员,可分为跨膜型和分泌型2种类型1-2。MUC家族多个成员的异常表达与癌症和炎症性疾病相关,例如MUC13、MUC17的表达上调与胃癌和胰腺癌的发生有关3-4MUC13基因敲除可以使肠上皮细胞凋亡增加从而促进肠道炎症的发生5-6MUC1基因位于1号染色体q22区域,转录为单一的mRNA,翻译产生的肽链在内质网中被水解为N末端亚基(MUC1-N)和C末端亚基(MUC1-C),两者通过非共价键连接形成MUC1蛋白7-8。MUC1-N包含数目可变串联重复序列(variable number of tandem repeats,VNTR)区和部分海胆精子蛋白-肠激酶-聚集蛋白(sperm protein-enterokinase-agarin,SEA)结构域;其中,VNTR区域富含丝氨酸(serine,Ser)、苏氨酸(threonine,Thr)和脯氨酸(proline,Pro),是发生O-连接N-乙酰半乳糖胺(GalNAc)修饰的位点;SEA结构域中的GSVVV基序是MUC1被水解为2个亚基的关键位点9-10。MUC1-C由胞外段(extracellular domain,ED)、跨膜段(transmembrane domain,TM)及胞内段(cytoplasmic domain,CD)组成11。MUC1-CD含有7个酪氨酸(tyrosine,Tyr),可以参与多种激酶信号通路12;MUC1-CD头部含CQC(半胱氨酸-谷氨酰胺-半胱氨酸)基序,是MUC1形成同源二聚体并行使生物学功能所必需13-14。MUC1在组织器官中广泛分布,主要包括消化道、生殖管道、呼吸系统,以及各种腺体的管腔上皮细胞表面。正常情况下,MUC1与MUC家族其他成员一起形成黏液层,润滑并保护上皮细胞免受环境因素的刺激15-16;在肿瘤组织中,MUC1丧失极性分布并过度表达,其蛋白水平可达到正常水平的50~100倍17。此外,MUC1侧链被高度唾液酸化,阻止糖链的进一步延伸,从而暴露配体结合域并增强致癌信号18。因此,MUC1的胞外抗原CA15-319和CA19-920已作为乳腺癌和胰腺癌诊断的临床标志物。

MUC1,特别是MUC1-C,在肿瘤中参与多种信号通路的异常转导,调控肿瘤细胞增殖、转移、凋亡、干性维持及化学治疗耐药等恶性特征21,但是MUC1参与肿瘤各种恶性特征调控的基序并不完全清楚。过往研究主要聚焦于MUC1过表达与肿瘤的关系,关于MUC1的基因突变研究仅限于由VNTR区AG缺失导致的移码突变,进而引发的常染色体显性遗传肾小管间质性肾病(autosomal dominant tubulointerstitial kidney disease,ADTKD)22-23。目前尚无研究对肿瘤中MUC1的错义突变及功能进行分析。为了研究MUC1蛋白参与肿瘤恶性特征调控的功能基序,我们通过癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库分析,寻找MUC1在不同癌症中的突变位点;并选择突变频率较高且稳定表达的突变体,研究它们对肿瘤细胞增殖、迁移、干性维持的影响,以探究MUC1不同位点的功能。

1 材料和方法

1.1 材料

1.1.1 细胞及质粒

人类三阴性乳腺癌细胞BT549、人乳腺上皮细胞MCF-10A、人胚胎肾细胞HEK293T均购自中科院上海生命科学研究院细胞资源中心。3种细胞均经细胞系遗传背景鉴定[即短串联重复序列(STR)鉴定,由上海翼和应用生物技术有限公司完成],且无支原体污染。BT549 MUC1敲除(gMUC1)细胞系与对照组(gCtrl)细胞系来自本实验室前期已构建细胞24。质粒pMD2.G、psPAX2来自Addgene,质粒pIRES-puro2、pENTR-1A、pInducer-20均来自上海交通大学医学院DNA文库。

1.1.2 主要试剂和仪器

高糖DMEM培养基、RPMI-1640培养基、DMEM-F12培养基、牛血清白蛋白(BSA)、霍乱毒素(cholera toxin,CTX)购自上海源培生物科技股份有限公司,限制性内切酶Bsu36Ⅰ、NotⅠ购自美国BioLabs公司,T4连接酶购自南京诺唯赞生物科技股份有限公司,Gateway™ LR Clonase™ Ⅱ酶混合物购自美国Thermo Fisher Scientific公司,质粒快速小抽试剂盒购自天根生化科技(北京)有限公司,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)预制胶、胰蛋白酶、青霉素-链霉素双抗和Nano293T转染试剂购自苏州新赛美生物公司,聚凝胺(polybrene)购自美国Sigma-Aldrich公司,胎牛血清(fetal bovine serum,FBS)、B-27无血清添加剂购自美国Gibco公司,马血清购自美国Biological Industries公司,表皮生长因子(epidermal growth factor,EGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor,b-FGF)购自美国PeproTech公司,胰岛素购自北京兰博利德生物技术有限公司,结晶紫、DAPI染色液购自上海碧云天生物技术有限公司,氢化可的松(hydrocortisone)、细胞计数试剂盒(CCK-8)购自上海陶素生化科技有限公司,抗MUC1-N抗体购自美国Sigma-Aldrich公司,抗MUC1-C抗体购自美国Selleck公司,抗β-肌动蛋白(β-actin)抗体购自美国CST公司,辣根过氧化物酶(horseradish peroxidase,HRP)-羊抗兔二抗、HRP-羊抗鼠二抗购自上海Abmart公司,Texas-Red-羊抗兔二抗购自美国Jackson公司。

超微量分光光度计(ND8000LAPTOP,美国Thermo Fisher Scientific),Azure Biosystems化学发光成像系统(C300,美国Azure),倒置显微镜(Eclipse Ts2R-FL,日本Nikon),共聚焦显微镜(TCS SP8 X,德国Leica),酶标仪(Multiskan™ FC,美国Thermo Fisher Scientific)。

1.2 方法

1.2.1 不同肿瘤中MUC1突变位点的分析

通过TCGA数据库(https://www.cbioportal.org/),查找不同肿瘤患者样本中MUC1的突变位点,分析各突变位点的来源、频率及定位。

1.2.2 细胞培养

BT549细胞用含1%双抗和10% FBS的RPMI-1640完全培养基培养;MCF-10A细胞培养基配方为25 mg/mL胰岛素10 μL、100 μg/mL EGF 10 μL、5 mg/mL氢化可的松5 mL、1 mg/mL CTX 5 mL、马血清2.5 mL,DMEM-F12培养基补足至50 mL;HEK293T细胞用含1%双抗和10% FBS的高糖DMEM完全培养基培养。细胞均在含有5% CO2的培养箱中37 ℃恒温培养。

1.2.3 MUC1突变体质粒的构建

根据数据库检索到的MUC1突变位点,设计对应的引物(表1)。以pIRES-puro2-MUC1-WT25为模板通过聚合酶链反应(polymerase chain reaction,PCR)构建MUC1定点突变质粒,即pIRES-puro2-MUC1-AQA/S251R/N271S/V359I/P418S/N465H(pIRES-puro2-MUC1-mutants),其中,MUC1-AQA为MUC1-CQC功能丧失的突变体,此处作为阴性对照26-27。PCR反应程序:94 ℃ 4 min;94 ℃ 30 s,62 ℃ 30 s,72 ℃ 1 min,30个循环;72 ℃ 5 min。将以上构建的突变质粒经过Bsu36Ⅰ、NotⅠ酶切连接至pENTR-1A质粒中,然后采用Gateway重组方法构建pInducer-MUC1-WT/AQA/S251R/N271S/V359I/P418S/N465H(pInducer-MUC1-WT/mutants)质粒。

表1   PCR引物序列

Tab 1  Primer sequences for PCR

PrimerForward (5′→3′)Reverse (5′→3′)
AQAGCCTTGGCTGTCGCTCAGGCCCGCCGAAAGAACGTTCTTTCGGCGGGCCTGAGCGACAGCCAAGGC
S251RCCTCCAATCACAGGACTTCTCCCCAGCTGGGGAGAAGTCCTGTGATTGGAGG
N271STTCACATTTCAAGCCTCCAGTTTAATTAATTAAACTGGAGGCTTGAAATGTGAA
V359IACGATCTCAGACATCAGCGTGAGTGATATCACTCACGCTTACGTCTGAGATCGT
P418SCAGCTGGACATCTTTTCAGCCCGGGATATCCCGGGCTGAAAAGATGTCCAGCTG
N465HTCTTACACACACCCAGCAGTGGCAGCCGGCTGCCACTGCTGGGTGTGTGTAAGA

新窗口打开| 下载CSV


1.2.4 MUC1突变体稳转细胞系的构建和诱导表达

① 病毒包装:HEK293T细胞培养至汇合度为60%~70%时,以1∶3∶4的比例,加入pMD2.G质粒、psPAX2质粒及pInducer-vector或pInducer-MUC1-WT/MUC1-mutants质粒体系,并用Nano293T转染试剂转染,于培养箱中分别培养48 h和72 h后,用20 mL注射器吸取病毒上清液。上清液经孔径0.45 μm滤头过滤后,保存于-80 ℃。② 病毒感染:采用BT549 gMUC1细胞系24及MCF-10A细胞系,待上述细胞长至30%~40%汇合度时,进行病毒感染,病毒感染体系为4 mL无双抗的完全培养基、1 mL病毒液和4 μL polybrene(终浓度8 μg/mL),感染4~6 h后换液,继续培养48 h后按一定比例传代,并加入抗性筛选药物G418(终浓度50 μg/mL),筛选7 d后,加入多西环素(doxycycline,DOX)处理48 h诱导MUC1的表达并收集混合克隆细胞检测蛋白表达。

1.2.5 Western blotting分析

通过胰蛋白酶消化收集细胞,并用含蛋白酶抑制剂(1∶100)的NETN150裂解液裂解细胞,超声破碎。通过Quick Start Bradford试剂对蛋白质进行定量,SDS-PAGE分离蛋白质并转移至硝酸纤维素膜。在室温下用5%脱脂牛奶封闭1 h后,将膜依次与抗MUC1-N一抗、抗MUC1-C一抗在4 ℃下孵育过夜;在室温下加入HRP-二抗孵育30 min,采用化学发光法检测。

1.2.6 免疫荧光实验

先将灭菌的圆形盖玻片置入6孔板中,然后每孔加入3×104个细胞,培养箱中培养过夜。次日,PBS洗净后加入4%多聚甲醛,室温固定10 min。PBS洗净后加入0.1% Triton X-100处理10 min,PBS洗净后加入含5%山羊血清的BSA,室温封闭1 h。PBS洗净后加入抗MUC1-C一抗,4 ℃孵育过夜。PBS洗净后加入按比例稀释带有Texas-Red荧光标记的二抗,避光37 ℃孵育2 h。PBS洗净后吸去盖玻片上多余水分,将有细胞附着的一面朝下贴在滴加DAPI的载玻片上,室温孵育10 min,指甲油封片。随后使用激光共聚焦显微镜进行荧光拍照。

1.2.7 细胞增殖实验

细胞接种于96孔板中(BT549细胞1 500个/孔,MCF-10A细胞1 000个/孔),使用CCK-8法测定细胞活力,按试剂盒说明书操作。酶标仪测量450 nm波长处的吸光度。

1.2.8 细胞克隆形成实验

细胞接种于6孔板中(1 000个/孔),加入含10% FBS的培养基培养5~9 d,直至形成肉眼可见的细胞克隆。然后采用4%多聚甲醛固定30 min,并以0.1%结晶紫染色1 h,扫描仪成像拍照。

1.2.9 细胞划痕实验

按照1×106个/孔将细胞接种于6孔板,采用含10% FBS的培养基培养。次日待细胞达到100%汇合度后,用200 μL的枪头进行划线。然后更换为无血清培养基,分别在初始和培养48 h后,采用显微镜拍摄同一视野下细胞的迁移照片。细胞迁移率=(初始宽度-48 h宽度)/初始宽度×100%。

1.2.10 Transwell实验

将细胞接种于Transwell上室(BT549细胞2×104个/孔,MCF-10A细胞7×104个/孔),并置于24孔板中。其中上室加入不含或减血清的培养基,下室加入含有10% FBS的完全培养基。细胞培养24 h后,将下室细胞用4%多聚甲醛固定30 min,并以0.1%结晶紫染色1 h,擦去上室细胞后在显微镜下拍照并统计细胞数量。

1.2.11 细胞成球实验

将细胞接种于超低吸附的24孔板中(BT549细胞2 000个/孔,MCF-10A细胞7 000个/孔)。细胞成球实验采用无血清的DMEM-F12培养基,含0.4% BSA、20 ng/mL EGF、20 ng/mL b-FGF、50 μg/mL胰岛素和1×B-27。细胞培养7 d后,在显微镜下对微球体(直径>50 μm)进行计数。

1.2.12 MUC1突变体蛋白结构定位及分子对接分析

应用PyMOL软件(v2.5.4)对MUC1突变体的SEA结构进行分析,使用ZDOCK Server(https://zdock.umassmed.edu/)对MUC1与表皮生长因子受体(epidermal growth factor receptor,EGFR)胞外域(extracellular domain,ECD)进行分子对接分析,并通过PDBePISA软件(v1.52)分析分子结合的吉布斯自由能。

1.3 统计学分析

所有统计分析均应用GraphPad Prism 8.0软件。定量资料采用x±s表示,实验重复3次,组间比较采用t检验。P<0.05表示差异有统计学意义。

2 结果

2.1 TCGA数据库分析 MUC1 基因突变

首先利用TCGA数据库查找MUC1基因突变位点,结果显示MUC1突变较多的肿瘤包括结直肠腺癌、子宫内膜癌、胃癌、皮肤黑色素瘤、肺腺癌、浸润性乳腺癌等(图1A)。随后,对MUC1蛋白功能域中的突变进行了分析,其中MUC1-N以VNTR为界将前后分别定义为N1和N2区段(图1B)。最终得到的102个突变位点中,28个位于N1段,6个位于VNTR段,21个位于N2段,17个位于SEA段,5个位于ED段,7个位于TM段,18个位于CD段(图1C)。进一步对突变位点出现频率进行分析,统计了出现频率≥1.95%的突变,共14个(图1D)。将这14个突变按照出现频率从高到低排序,并综合考虑以下因素:突变频率较高且位于非VNTR区,优先选择MUC1-C区或易发生糖基化的位点。最终选择5个错义突变P418S、S251R、V359I、N271S及N465H用于进一步研究(表2)。

图1

图1   TCGA数据库中 MUC1 突变位点来源、定位及频率分析

Note: A. Proportion of MUC1 mutations in various tumor types. B. MUC1 protein consisting of N1, VNTR, N2, SEA, ED, TM, and CD domains. C. Location of 102 mutation sites in MUC1 protein. D. The mutation sites with a frequency of 1.95% or more in tumor samples.

Fig 1   Analysis of sources, positions, and frequencies of MUC1 mutation sites in the TCGA database


表2   14MUC1 高频突变体的信息

Tab 2  Information of 14 MUC1 mutants with high frequency

MutantCancer typeLocationFrequency/%
P418SLung squamous cell carcinomaCD5.19
T112PBladder urothelial carcinoma/pancreatic adenocarcinomaN14.55
P134APancreatic adenocarcinoma/melanomaVNTR3.90
S251REsophagogastric cancer/stomach adenocarcinomaN22.60
V359IColorectal adenocarcinoma/breast invasive carcinomaED2.60
G33RCutaneous squamous cell carcinomaN11.95
S55NUterine corpus endometrial carcinomaN11.95
P102LStomach adenocarcinomaN11.95
N271SBreast invasive carcinomaSEA1.95
G305DStomach adenocarcinomaSEA1.95
D336YLung adenocarcinomaSEA1.95
V359FBreast invasive carcinomaED1.95
P418LCutaneous squamous cell carcinomaCD1.95
N465HUterine corpus endometrioid carcinomaCD1.95

新窗口打开| 下载CSV


2.2 MUC1 不同突变体的蛋白水平分析

结果如图2所示。首先,我们构建了AQA、S251R、N271S、V359I、P418S及N465H的表达载体。此处以MUC1-AQA作为阴性对照,野生型MUC1(MUC1-WT)作为阳性对照。在HEK293T细胞中导入上述载体,Western blotting结果表明:S251R、N271S、V359I突变体的MUC1-N及MUC1-C亚基的蛋白水平与野生型相当,而P418S和N465H突变体的蛋白水平较低(图2A、B)。

图2

图2   MUC1-WT及其突变体在细胞中的蛋白表达水平

Note: A/C/E. Western blotting was used to detect MUC1 protein expression levels in HEK293T cells (A), BT549 cells (C) and MCF-10A cells (E). B/D/F. Statistical analysis of MUC1 protein levels in HEK293T cells (B), BT549 cells (D) and MCF-10A cells (F). P<0.001, P=0.020, P=0.002.

Fig 2   Protein expression levels of MUC1-WT and mutants in the cells


为了研究MUC1突变体在肿瘤细胞中的表达情况,利用三阴性乳腺癌BT549细胞系,敲除MUC1后分别回转MUC1-WT及各突变体并对其表达水平进行检测。结果发现S251R、N271S、V359I突变体MUC1-N及MUC1-C的蛋白水平与野生型相似(图2C、D),MUC1-AQA一定程度上降低了MUC1-N的表达,但MUC1-C的蛋白表达水平较高。进一步在人正常乳腺上皮细胞系MCF-10A中验证S251R、N271S和V359I突变体MUC1-N及MUC1-C的蛋白表达水平,结果可见表达水平与野生型类似(图2E、F)。因此,将S251R、N271S、V359I 3种突变用于后续功能研究。

2.3 MUC1 突变体细胞定位的分析

进一步利用BT549和MCF-10A细胞系对MUC1及其突变体的细胞定位进行分析。免疫荧光结果显示,在2种细胞系中,MUC1-WT及各突变体主要分布在细胞质中,同时细胞核中也存在一定的分布(图3A、B)。与野生型相比,各突变体核质比例无明显差异,提示这3种突变对MUC1的细胞定位无明显影响(图3C、D)。

图3

图3   MUC1-WT及其突变体的细胞定位

Note: A/B. Detection of cellular localization of MUC1 mutants by immunofluorescence in BT549 cells (A) and MCF-10A cells (B)(×600). C/D. Statistical analysis of MUC1 nuclear/cytoplasm ratio in BT549 cells (C) and MCF-10A cells (D).

Fig 3   Cellular localization of MUC1-WT and mutants


2.4 MUC1 突变体对细胞增殖能力的影响

利用BT549和MCF-10A细胞系进一步研究突变体对细胞增殖能力的影响。CCK-8结果显示,BT549细胞中,与gCtrl细胞相比,MUC1敲除(gMUC1细胞)显著降低细胞的增殖能力。之后在gMUC1细胞中,分别回补空载体(Vector)、MUC1-WT及各突变体;与Vector相比,MUC1-WT可增强细胞的增殖能力;相较MUC1-WT细胞,MUC1-AQA、S251R和N271S细胞增殖能力显著降低;而MUC1-V359I细胞具有与MUC1-WT细胞相似的增殖能力(图4A)。与CCK-8检测结果一致,MUC1-WT细胞和V359I细胞克隆形成数无明显差异,而MUC1-AQA、S251R、N271S细胞克隆形成率显著降低(图4C、D)。

图4

图4   MUC1-WT及其突变体对细胞增殖能力的影响

Note: A/B. Growth curves of BT549 cells (A) and MCF-10A cells (B) expressing MUC1-WT or mutants detected by CCK-8. C/D. Colony formation analysis of BT549 cells expressing MUC1-WT or mutants. Representative crystal violet-stained images (C) and corresponding statistical analysis (D). E/F. Colony formation analysis of MCF-10A cells expressing MUC1-WT or mutants. Representative crystal violet-stained images (E) and corresponding statistical analysis (F). P<0.001, P=0.003, P=0.005, P=0.007, P=0.009.

Fig 4   Effect of MUC1-WT and mutants on cell proliferation


在MCF-10A细胞中,也观察到类似的结果。相比空载对照组(Vector),MUC1-WT细胞增殖能力增强;相比MUC1-WT细胞,MUC1-AQA、S251R和N271S细胞增殖水平和克隆形成率均显著降低;而MUC1-V359I细胞与MUC1-WT细胞增殖能力和克隆形成能力相似(图4B、E、F)。

以上结果提示,MUC1的S251R和N271S突变体在不同程度上破坏了MUC1促细胞增殖的功能,而MUC1-V359I则与MUC1-WT类似,仍有促进细胞增殖的作用。

2.5 MUC1 突变体对细胞迁移能力的影响

为了研究不同MUC1突变体对细胞迁移能力的影响,对表达MUC1不同突变体的细胞系进行细胞划痕实验及Transwell实验(图5)。结果显示,在BT549细胞中,敲除MUC1(gMUC1)细胞与gCtrl细胞相比,迁移能力显著降低。之后在gMUC1细胞中分别回补空载体(Vector)、MUC1-WT及各突变体,MUC1-WT细胞相比Vector细胞迁移能力显著提高;与MUC1-WT细胞相比,MUC1-AQA和N271S细胞的迁移能力显著降低,与MUC1敲除细胞和Vector细胞差异无统计学意义;而MUC1-S251R和V359I细胞与MUC1-WT细胞迁移能力相似,MUC1-S251R细胞的迁移能力在划痕实验中甚至高于MUC1-WT细胞。

图5

图5   MUC1-WT及其突变体对细胞迁移的影响

Note: A/B. Wound healing assay of BT549 cells expressing MUC1-WT or mutants. Representative images of cells at 0 h and 48 h (A, ×200) and corresponding statistical analysis (B). C/D. Wound healing assay of MCF-10A cells expressing MUC1-WT or mutants. Representative images of cells at 0 h and 48 h (C, ×200) and corresponding statistical analysis (D). E/F. Transwell migration analysis of BT549 cells expressing MUC1-WT or mutants. Representative crystal violet-stained images (E, ×100) and corresponding statistical analysis (F). G/H. Transwell migration analysis of MCF-10A cells expressing MUC1-WT or mutants. Representative crystal violet-stained images (G, ×100) and corresponding statistical analysis (H). P<0.001, P=0.004, P=0.014, P=0.030, P=0.025, P=0.003, P=0.050, P=0.042.

Fig 5   Effect of MUC1-WT and mutants on cell migration


在MCF-10A细胞中,相比空载对照(Vector)组,MUC1-WT细胞迁移能力增强;MUC1-AQA和S251R细胞迁移能力较MUC1-WT细胞显著减弱,而MUC1-N271S和V359I细胞迁移能力在划痕实验中与MUC1-WT细胞无明显差异,在Transwell实验中有略微降低的趋势,但总体迁移能力仍高于Vector细胞。

以上结果说明,V359I突变体基本保留了MUC1促肿瘤细胞迁移的功能,而S251R和N271S突变体在不同细胞中对细胞迁移能力的影响存在差异。

2.6 MUC1 突变体对细胞干性的影响

为了检测MUC1突变体对细胞干性的影响,利用细胞成球实验对表达不同MUC1突变体的细胞进行分析。结果显示,在BT549细胞中,gMUC1细胞与gCtrl细胞相比,细胞的成球能力显著降低;在gMUC1细胞中分别回补空载体(Vector)、MUC1-WT及各突变体后,MUC1-WT细胞相比Vector细胞的成球能力显著提升。MUC1-N271S、V359I细胞与MUC1-WT细胞的成球能力相似,而MUC1-AQA和S251R细胞成球能力下降(图6A、B)。在MCF-10A细胞中得到了相似的结果(图6C、D)。这些结果提示,MUC1-S251R突变体丧失了维持细胞干性的能力,MUC1-N271S和V359I突变体仍保留了维持细胞干性的能力。

图6

图6   MUC1-WT及其突变体对细胞干性的影响

Note: A/B. Sphere formation assay of BT549 cells expressing MUC1-WT or mutants. Representative images of spheres (A, ×100) and corresponding statistical analysis (B). C/D. Sphere formation assay of MCF-10A cells expressing MUC1-WT or mutants. Representative images of spheres (C, ×200) and corresponding statistical analysis (D). P<0.001, P=0.004, P=0.007, P=0.002.

Fig 6   Effect of MUC1-WT and mutants on cell stemness


2.7 MUC1 不同突变体的蛋白结构定位及分子对接分析

为了进一步探究突变影响MUC1功能的可能机制,应用PyMOL软件对已被完全解析的SEA功能域及附近(第261~371个氨基酸)的突变位点进行定位分析(图7A),结果显示N271位于loop区,V359位于β-折叠处。应用ZDOCK Server对MUC1-WT及S251R、N271S、V359I突变体胞外段(第208~365个氨基酸)与EGFR胞外域(ECD;第25~645个氨基酸)进行分子模拟对接,并通过PDBePISA软件以吉布斯自由能的变化量评估两者形成复合物的稳定性。结果显示,MUC1-WT与EGFR-ECD结合的吉布斯自由能变化量为-85.4 kJ/mol,MUC1-S251R、N271S、V359I与EGFR-ECD结合的吉布斯自由能变化量分别为-39.3、-51.9、-93.3 kJ/mol(图7B~E)。根据吉布斯自由能变化量,MUC1-WT及突变体与EGFR-ECD形成复合体的稳定性排序为V359I>WT>N271S>S251R。

图7

图7   SEA区域及附近的MUC1突变定位及相应突变体与EGFR-ECD的分子对接分析

Note: A. PyMoL software was used to localize MUC1 mutants in or around the SEA domain. B‒E. ZDOCK Server was used to analyze the molecular docking of MUC1-WT (B) and mutants (C, S251R; D, N271S; E, V359I) with EGFR-ECD. Green represents the MUC1-N region (before the GSVVV sequence), orange represents the MUC1-C region (after the GSVVV sequence), blue represents EGFR-ECD region, and yellow represents the localization of the mutation sites.

Fig 7   Analysis of localization of MUC1 mutation sites in or around the SEA domain and molecular docking of the mutants with EGFR-ECD


3 讨论

有研究在微卫星不稳定(microsatellite instability,MSI)型结直肠癌中发现MUC1同家族成员MUC4存在VNTR异常扩增28,提示黏蛋白遗传变异可能在癌症发生中发挥一定的作用。另外,也有研究发现MUC1剪接变异(splice variants,SVs),即在基因的不同位置剪接后可产生不同的蛋白质异构体,与癌症病理、炎症性疾病和免疫调节有关。如MUC1基因外显子2中的第3506位A/G单核苷酸多态性(single nucleotide polymorphism,SNP)可以调节内含子1中的3′剪接位点的选择,并产生不同的MUC1短亚型蛋白29,进而促进肿瘤形成;说明MUC1突变不仅对基因产物的多样性具有潜在影响,还可参与癌症进展。为了研究MUC1参与肿瘤各种恶性特征调控的功能基序,本研究利用TCGA数据库对肿瘤样本中MUC1突变位点进行统计定位,共获得102个编码区突变。数据分析发现83% MUC1突变为点突变,包括错义突变和无义突变,但也存在剪接、插入和缺失,MUC1突变的产生可能是由于不准确的DNA复制过程和遗传物质的化学损伤导致的SNP或错配修复机制缺陷(mismatch repair,MMR)。

已知癌症的发生是肿瘤细胞中驱动基因突变的结果,在癌症发展中被正向选择30。癌症的驱动基因突变通常表现为在不同肿瘤中反复出现,因此也作为肿瘤的生物标志物和治疗靶点31。基于此,本研究对MUC1突变体筛选主要考虑3个因素:第一,突变频率;MUC1-S251R、N271S、V359I、P418S、N465H 5个突变的频率较高,均≥1.95%。第二,突变位置;选择非VNTR区便于聚焦MUC1非重复序列的功能域研究。第三,蛋白水平;由于MUC1为癌蛋白,我们主要关注功能获得性突变,因此选择了MUC1稳定表达的突变体进行功能研究,即MUC1-S251R、N271S、V359I。

MUC1是高度糖基化的蛋白,除了主要发生在VNTR多肽链的Ser/Thr连接的O-GalNAc聚糖外,还有与5个天冬酰胺(asparagine,Asn)残基连接的N-聚糖,其中4个Asn位于N2,1个位于ED32。而MUC1胞外结构域糖基化在肿瘤中发生改变,可以形成独特的糖抗原,称为肿瘤相关糖类抗原(tumor-associated carbone antigen,TACA);TACA是抗肿瘤治疗的理想靶标7。本研究中MUC1-S251R和N271S突变分别发生在可被糖基化的Ser和Asn残基上,突变后可能对TACA产生不同的影响。此外,MUC1-P418S、N465H突变位于MUC1-CD,2种MUC1突变体的蛋白水平均降低,提示这2个突变位点可能影响MUC1蛋白的降解途径。已有研究表明,MUC1-C可以由整合素连接激酶(integrin-linked kinase,ILK)、E3泛素连接酶过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPAR-γ)33和含WW域E3泛素连接酶1(WW domain containing E3 ubiquitin protein ligase 1,WWP1)34介导的蛋白酶体途径调控其稳定性;因此推测这2个突变位点可能通过调控蛋白水平动态修饰机制来实现MUC1蛋白的降解,但相关机制还有待进一步研究。

本研究进一步利用MUC1-S251R、N271S、V359I突变体稳转细胞系,分析MUC1突变体的细胞定位,发现核质比在MUC1-WT和突变体之间无显著差异,提示这些突变可能并未影响MUC1的核质定位。鉴于MUC1在肿瘤生长、转移和干性中的调控作用,我们研究了MUC1突变体对细胞增殖、迁移、干性的影响。结果显示V359I突变并未影响MUC1对细胞的增殖、迁移、干性等的调控功能;而MUC1-S251R和N271S突变降低了细胞的增殖能力,但在不同细胞系中显示出不同的迁移能力,提示该2个位点有可能参与细胞增殖和迁移的信号通路调控,但在细胞迁移能力的调控中还受到细胞中其他蛋白的影响。上述结果说明MUC1的不同位点参与了肿瘤不同的恶性特征调控,MUC1-S251为调控细胞增殖、迁移及干性所必需;而N271可能参与调控细胞增殖和迁移。我们并未发现表达3种突变体细胞存在明显高于MUC1-WT细胞的肿瘤生物学功能,后续将进一步从MUC1结合蛋白出发,研究这些突变对相关信号通路的影响。

为了初步分析突变影响MUC1功能的可能机制,我们从MUC1突变结构定位和模拟分子对接方面进行了探究。现有MUC1蛋白结构仅SEA及附近区域被完全解析,对该区域内的突变进行定位,发现N271、V359分别位于loop区及β-折叠处。已有研究35揭示了氨基酸单点突变对于调控β折叠组装结构的重要作用,强调了氨基酸残基突变可能导致蛋白质高级结构的全局变化。因此,推测该区域位点的突变,特别是β-折叠处的突变,可能影响MUC1蛋白质结构36。又由于SEA区域内的GSVVV基序是MUC1多肽链被切割为2个肽段,即MUC1-N和MUC1-C的关键区域37,因此该区域及附近的突变可能影响MUC1翻译后水解或共价连接过程,进而可能进一步影响MUC1-C端的下游信号转导途径。此外,通过分子对接分析发现3个突变体与EGFR形成复合物的稳定性不同,V359I突变体和WT类似,与EGFR的结合较稳定;而N271S与S251R突变体和EGFR形成复合物的稳定性较差。有文献38报道,肿瘤中MUC1过表达可以通过胞外结构域与EGFR相结合,从而参与EGFR的活化并持续激活致癌信号通路促进肿瘤的生长。我们发现V359I突变不影响肿瘤细胞的增殖能力,而MUC1-S251R和N271S突变抑制了细胞的增殖,提示MUC1及突变体可能通过调控EGFR下游信号通路途径对细胞增殖能力产生影响。

综上所述,本研究结合大数据筛选和实验研究,对肿瘤患者中MUC1不同位点错义突变进行分析,揭示了MUC1不同功能部位调控不同肿瘤恶性表型的现象,为后续进一步研究MUC1的致瘤机制打下基础,也为靶向MUC1治疗提供新思路。

作者贡献声明

高珂星、廖春华、李昇泽完成实验操作和数据分析;高珂星、马双羽、黄雷负责论文的写作与修改;黄雷负责课题设计。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The experimental operation and data analysis were completed by GAO Kexing, LIAO Chunhua and LI Shengze. GAO Kexing, MA Shuangyu and HUANG Lei were responsible for manuscript draft and revision. HUANG Lei was responsible for project design. All authors have read the final manuscript and agreed to the submission.

利益冲突声明

所有作者声明不存在利益冲突

COMPETING INTERESTS

All authors disclose no relevant conflict of interests

参考文献

KUFE D W. Mucins in cancer: function, prognosis and therapy[J]. Nat Rev Cancer, 2009, 9(12): 874-885.

[本文引用: 1]

ANDRIANIFAHANANA M, MONIAUX N, BATRA S K. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases[J]. Biochim Biophys Acta, 2006, 1765(2): 189-222.

[本文引用: 1]

MONIAUX N, ANDRIANIFAHANANA M, BRAND R E, et al. Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy[J]. Br J Cancer, 2004, 91(9): 1633-1638.

[本文引用: 1]

GAEMERS I C, VOS H L, VOLDERS H H, et al. A STAT-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells[J]. J Biol Chem, 2001, 276(9): 6191-6199.

[本文引用: 1]

SHENG Y H, LOURIE R, LINDÉN S K, et al. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis[J]. Gut, 2011, 60(12): 1661-1670.

[本文引用: 1]

SINGH A P, MONIAUX N, CHAUHAN S C, et al. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis[J]. Cancer Res, 2004, 64(2): 622-630.

[本文引用: 1]

NATH S, MUKHERJEE P. MUC1: a multifaceted oncoprotein with a key role in cancer progression[J]. Trends Mol Med, 2014, 20(6): 332-342.

[本文引用: 2]

CHEN W Q, ZHANG Z, ZHANG S Q, et al. MUC1: structure, function, and clinic application in epithelial cancers[J]. Int J Mol Sci, 2021, 22(12): 6567.

[本文引用: 1]

HATTRUP C L, GENDLER S J. Structure and function of the cell surface (tethered) mucins[J]. Annu Rev Physiol, 2008, 70: 431-457.

[本文引用: 1]

LEVITIN F, STERN O, WEISS M, et al. The MUC1 SEA module is a self-cleaving domain[J]. J Biol Chem, 2005, 280(39): 33374-33386.

[本文引用: 1]

CARSON D D. The cytoplasmic tail of MUC1: a very busy place[J]. Sci Signal, 2008, 1(27): pe35.

[本文引用: 1]

KUFE D W. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment[J]. Carcinogenesis, 2020, 41(9): 1173-1183.

[本文引用: 1]

LENG Y M, CAO C, REN J, et al. Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62[J]. J Biol Chem, 2007, 282(27): 19321-19330.

[本文引用: 1]

RAINA D, AHMAD R, RAJABI H, et al. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells[J]. Int J Oncol, 2012, 40(5): 1643-1649.

[本文引用: 1]

VAN PUTTEN J P M, STRIJBIS K. Transmembrane mucins: signaling receptors at the intersection of inflammation and cancer[J]. J Innate Immun, 2017, 9(3): 281-299.

[本文引用: 1]

YOLKEN R H, PETERSON J A, VONDERFECHT S L, et al. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis[J]. J Clin Invest, 1992, 90(5): 1984-1991.

[本文引用: 1]

LAU S K, WEISS L M, CHU P G. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study[J]. Am J Clin Pathol, 2004, 122(1): 61-69.

[本文引用: 1]

KASHYAP B, KULLAA A M. Regulation of mucin 1 expression and its relationship with oral diseases[J]. Arch Oral Biol, 2020, 117: 104791.

[本文引用: 1]

SAFI F, KOHLER I, RÖTTINGER E, et al. The value of the tumor marker CA 15-3 in diagnosing and monitoring breast cancer[J]. Cancer, 1991, 68(3): 574-582.

[本文引用: 1]

STEINBERG W. The clinical utility of the CA 19-9 tumor-associated antigen[J]. Am J Gastroenterol, 1990, 85(4): 350-355.

[本文引用: 1]

SUPRUNIUK K, RADZIEJEWSKA I. MUC1 is an oncoprotein with a significant role in apoptosis (Review)[J]. Int J Oncol, 2021, 59(3): 68.

[本文引用: 1]

YAMAMOTO S, KAIMORI J Y, YOSHIMURA T, et al. Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein[J]. Nephrol Dial Transplant, 2017, 32(12): 2010-2017.

[本文引用: 1]

WENZEL A, ALTMUELLER J, EKICI A B, et al. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations[J]. Sci Rep, 2018, 8(1): 4170.

[本文引用: 1]

LI Q F, CHU Y K, LI S Z, et al. The oncoprotein MUC1 facilitates breast cancer progression by promoting Pink1-dependent mitophagy via ATAD3A destabilization[J]. Cell Death Dis, 2022, 13(10): 899.

[本文引用: 2]

JIN W, LIAO X D, LV Y P, et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner[J]. Cell Death Dis, 2017, 8(8): e2980.

[本文引用: 1]

RAZAWI H, KINLOUGH C L, STAUBACH S, et al. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1[J]. Glycobiology, 2013, 23(8): 935-945.

[本文引用: 1]

KINLOUGH C L, MCMAHAN R J, POLAND P A, et al. Recycling of MUC1 is dependent on its palmitoylation[J]. J Biol Chem, 2006, 281(17): 12112-12122.

[本文引用: 1]

PASTRELLO C, SANTAROSA M, FORNASARIG M, et al. MUC gene abnormalities in sporadic and hereditary mucinous colon cancers with microsatellite instability[J]. Dis Markers, 2005, 21(3): 121-126.

[本文引用: 1]

ZHANG L X, VLAD A, MILCAREK C, et al. Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms[J]. Cancer Immunol Immunother, 2013, 62(3): 423-435.

[本文引用: 1]

STRATTON M R, CAMPBELL P J, FUTREAL P A. The cancer genome[J]. Nature, 2009, 458(7239): 719-724.

[本文引用: 1]

MARTÍNEZ-JIMÉNEZ F, MUIÑOS F, SENTÍS I, et al. A compendium of mutational cancer driver genes[J]. Nat Rev Cancer, 2020, 20(10): 555-572.

[本文引用: 1]

NABAVINIA M S, GHOLOOBI A, CHARBGOO F, et al. Anti-MUC1 aptamer: a potential opportunity for cancer treatment[J]. Med Res Rev, 2017, 37(6): 1518-1539.

[本文引用: 1]

HOU Y, GAO J, XU H, et al. PPARγ E3 ubiquitin ligase regulates MUC1-C oncoprotein stability[J]. Oncogene, 2014, 33(49): 5619-5625.

[本文引用: 1]

LIAO C H, YU L P, PANG Z, et al. WWP1 targeting MUC1 for ubiquitin-mediated lysosomal degradation to suppress carcinogenesis[J]. Signal Transduct Target Ther, 2021, 6(1): 297.

[本文引用: 1]

ZHANG W B, LIU M W, YU L L, et al. Perturbation effect of single polar group substitution on the self-association of amphiphilic peptide helices[J]. J Colloid Interface Sci, 2022, 610: 1005-1014.

[本文引用: 1]

ZHANG W B, LIU M W, WANG Y, et al. β-sheet assembly translates conservative single-site mutation into a perturbation in macroscopic structure[J]. Nano Lett, 2023, 23(6): 2370-2378.

[本文引用: 1]

MACAO B, JOHANSSON D G, HANSSON G C, et al. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin[J]. Nat Struct Mol Biol, 2006, 13(1): 71-76.

[本文引用: 1]

MERLIN J, STECHLY L, DE BEAUCÉ S, et al. Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells[J]. Oncogene, 2011, 30(22): 2514-2525.

[本文引用: 1]

/