1 |
BEADLING C, JOHNSON K W, SMITH K A. Isolation of interleukin 2-induced immediate-early genes[J]. Proc Natl Acad Sci USA, 1993, 90(7): 2719-2723.
|
2 |
ABDOLLAHI A, LORD K A, HOFFMAN-LIEBERMANN B, et al. Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines[J]. Oncogene, 1991, 6(1): 165-167.
|
3 |
LIEBERMANN D A, HOFFMAN B. Gadd45 in stress signaling[J]. J Mol Signal, 2008, 3: 15.
|
4 |
KEARSEY J M, COATES P J, PRESCOTT A R, et al. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1[J]. Oncogene, 1995, 11(9): 1675-1683.
|
5 |
HILDESHEIM J, BULAVIN D V, ANVER M R, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53[J]. Cancer Res, 2002, 62(24): 7305-7315.
|
6 |
SULTAN F A, SAWAYA B E. Gadd45 in neuronal development, function, and injury[J]. Adv Exp Med Biol, 2022, 1360: 117-148.
|
7 |
TAMURA R E, DE VASCONCELLOS J F, SARKAR D, et al. GADD45 proteins: central players in tumorigenesis[J]. Curr Mol Med, 2012, 12(5): 634-651.
|
8 |
ZAIDI M R, LIEBERMANN D A. Gadd45 in senescence[J]. Adv Exp Med Biol, 2022, 1360: 109-116.
|
9 |
ZHAN Q, LORD K A, ALAMO I Jr, et al. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth[J]. Mol Cell Biol, 1994, 14(4): 2361-2371.
|
10 |
HOFFMAN B, LIEBERMANN D A. Role of gadd45 in myeloid cells in response to hematopoietic stress[J]. Blood Cells Mol Dis, 2007, 39(3): 344-347.
|
11 |
ZHANG W, BAE I, KRISHNARAJU K, et al. CR6: a third member in the MyD118 and Gadd45 gene family which functions in negative growth control[J]. Oncogene, 1999, 18(35): 4899-4907.
|
12 |
FAGERBERG L, HALLSTRÖM B M, OKSVOLD P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J]. Mol Cell Proteomics, 2014, 13(2): 397-406.
|
13 |
BALLIET A G, HATTON K S, HOFFMAN B, et al. Comparative analysis of the genetic structure and chromosomal location of the murine MyD118 (Gadd45β) gene[J]. DNA Cell Biol, 2001, 20(4): 239-247.
|
14 |
VAIRAPANDI M, BALLIET A G, HOFFMAN B, et al. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress[J]. J Cell Physiol, 2002, 192(3): 327-338.
|
15 |
SMITH M L, CHEN I T, ZHAN Q, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen[J]. Science, 1994, 266(5189): 1376-1380.
|
16 |
SHI Y L, WANG J Y, HUANG G, et al. A novel epithelial-mesenchymal transition gene signature for the immune status and prognosis of hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(4): 906-917.
|
17 |
KEIL E, HÖCKER R, SCHUSTER M, et al. Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy[J]. Cell Death Differ, 2013, 20(2): 321-332.
|
18 |
XUE M, SUN H X, XU R, et al. GADD45B promotes glucose-induced renal tubular epithelial-mesenchymal transition and apoptosis via the p38 MAPK and JNK signaling pathways[J]. Front Physiol, 2020, 11: 1074.
|
19 |
SHEN X Y, SHI S H, LI H, et al. The role of Gadd45b in neurologic and neuropsychiatric disorders: an overview[J]. Front Mol Neurosci, 2022, 15: 1021207.
|
20 |
DENG K P, FAN Y X, LIANG Y X, et al. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J]. Mol Ther Nucleic Acids, 2021, 26: 34-48.
|
21 |
MOON S J, KIM J H, CHOI Y K, et al. Ablation of Gadd45β ameliorates the inflammation and renal fibrosis caused by unilateral ureteral obstruction[J]. J Cell Mol Med, 2020, 24(15): 8814-8825.
|
22 |
ZHANG K M, ZHANG Q B, DENG J, et al. ALK5 signaling pathway mediates neurogenesis and functional recovery after cerebral ischemia/reperfusion in rats via Gadd45b[J]. Cell Death Dis, 2019, 10(5): 360.
|
23 |
SHAH A, WONDISFORD F E. Gluconeogenesis flux in metabolic disease[J]. Annu Rev Nutr, 2023, 43: 153-177.
|
24 |
MOUCHIROUD L, EICHNER L J, SHAW R J, et al. Transcriptional coregulators: fine-tuning metabolism[J]. Cell Metab, 2014, 20(1): 26-40.
|
25 |
FUHRMEISTER J, ZOTA A, SIJMONSMA T P, et al. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health[J]. EMBO Mol Med, 2016, 8(6): 654-669.
|
26 |
KIM H, LEE D S, AN T H, et al. GADD45β regulates hepatic gluconeogenesis via modulating the protein stability of FoxO1[J]. Biomedicines, 2021, 9(1): 50.
|
27 |
WU L, JIAO Y, LI Y, et al. Hepatic Gadd45β promotes hyperglycemia and glucose intolerance through DNA demethylation of PGC-1α[J]. J Exp Med, 2021, 218(5): e20201475.
|
28 |
LING C, RÖNN T. Epigenetics in human obesity and type 2 diabetes[J]. Cell Metab, 2019, 29(5): 1028-1044.
|
29 |
DONG Y X, MA N N, FAN L, et al. GADD45β stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation[J]. Pharmacol Res, 2021, 173: 105879.
|
30 |
LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564.
|
31 |
ZHANG L T, LIU T J, HU C Z, et al. Proteome analysis identified proteins associated with mitochondrial function and inflammation activation crucially regulating the pathogenesis of fatty liver disease[J]. BMC Genomics, 2021, 22(1): 640.
|
32 |
WU J K, SHAO X H, SHEN J X, et al. Downregulation of PPARα mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells[J]. Int J Biol Sci, 2022, 18(14): 5438-5458.
|
33 |
MAN S, DENG Y H, MA Y, et al. Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: a nationwide study with 5.7 million adults in China[J]. Gastroenterology, 2023, 165(4): 1025-1040.
|
34 |
LIN H P, YIP T C, ZHANG X R, et al. Age and the relative importance of liver-related deaths in nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(2): 573-584.
|
35 |
YOUNOSSI Z M, HARRING M, YOUNOSSI Y, et al. The impact of NASH to liver transplantations with hepatocellular carcinoma in the United States[J]. Clin Gastroenterol Hepatol, 2022, 20(12): 2915-2917.e1.
|
36 |
ZHANG Z H, WANG S H, ZHU Z W, et al. Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies[J]. Comput Biol Med, 2023, 157: 106724.
|
37 |
YIP T C, FAN J G, WONG V W. China's fatty liver crisis: a looming public health emergency[J]. Gastroenterology, 2023, 165(4): 825-827.
|
38 |
JIANG Y, XIANG C, ZHONG F, et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis[J]. Theranostics, 2021, 11(1): 361-378.
|
39 |
TZENG H T, CHYUAN I T, CHEN W Y. Shaping of innate immune response by fatty acid metabolite palmitate[J]. Cells, 2019, 8(12): 1633.
|
40 |
QIU W H, DAVID D, ZHOU B S, et al. Down-regulation of growth arrest DNA damage-inducible gene 45β expression is associated with human hepatocellular carcinoma[J]. Am J Pathol, 2003, 162(6): 1961-1974.
|
41 |
XIA H P, LEE K W, CHEN J X, et al. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib[J]. Cell Death Discov, 2017, 3: 17058.
|
42 |
OU D L, SHEN Y C, YU S L, et al. Induction of DNA damage-inducible gene GADD45β contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells[J]. Cancer Res, 2010, 70(22): 9309-9318.
|
43 |
HOU X J, ZHAO Q D, JING Y Y, et al. Methylation mediated Gadd45β enhanced the chemosensitivity of hepatocellular carcinoma by inhibiting the stemness of liver cancer cells[J]. Cell Biosci, 2017, 7: 63.
|
44 |
GONG L Q, CAI L Q, LI G D, et al. GADD45B facilitates metastasis of ovarian cancer through epithelial-mesenchymal transition[J]. Onco Targets Ther, 2021, 14: 255-269.
|
45 |
CHEN L, KARISMA V W, LIU H W, et al. MicroRNA-300: a transcellular mediator in exosome regulates melanoma progression[J]. Front Oncol, 2019, 9: 1005.
|
46 |
NAPOLIONI V, BIANCONI F, POTENZA R, et al. Genome-wide expression of the residual lung reacting to experimental Pneumonectomy[J]. BMC Genomics, 2021, 22(1): 881.
|
47 |
WANG Q, WU W H, GAO Z, et al. GADD45B is a potential diagnostic and therapeutic target gene in chemotherapy-resistant prostate cancer[J]. Front Cell Dev Biol, 2021, 9: 716501.
|
48 |
YAO Z Y, CHEN Y, CAO W H, et al. Chromatin-modifying drugs and metabolites in cell fate control[J]. Cell Prolif, 2020, 53(11): e12898.
|