上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (3): 387-392.doi: 10.3969/j.issn.1674-8115.2022.03.019
收稿日期:
2021-10-28
出版日期:
2022-03-16
发布日期:
2022-03-16
通讯作者:
苗雅
E-mail:linyijia2020@126.com;nning-my@163.com
作者简介:
林祎嘉(1998—),女,硕士生;电子信箱:linyijia2020@126.com。
基金资助:
LIN Yijia(), CHENG Lizhen, MIAO Ya()
Received:
2021-10-28
Online:
2022-03-16
Published:
2022-03-16
Contact:
MIAO Ya
E-mail:linyijia2020@126.com;nning-my@163.com
Supported by:
摘要:
阿尔茨海默病(Alzheimer's disease,AD)是一种神经退行性疾病,也是老年痴呆的主要类型之一。近年来的研究发现,AD患者常发生线粒体自噬异常。相关研究显示,线粒体自噬是线粒体质量和数量控制的重要途径,即细胞可通过选择性自噬清除受损或功能失调的线粒体,以维持细胞的正常生理功能和能量供应。该文从AD状态下线粒体自噬发生的异常变化及该变化在AD发生发展中的作用及机制进行综述,以期提供通过靶向诱导线粒体自噬来控制并延缓AD进程的新思路。
中图分类号:
林祎嘉, 程丽珍, 苗雅. 线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 387-392.
LIN Yijia, CHENG Lizhen, MIAO Ya. Research progress in the role and mechanism of abnormal mitophagy in Alzheimer's disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 387-392.
1 | JIA L, DU Y, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. |
2 | CAI Q, JEONG Y Y. Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases[J]. Cells, 2020, 9(1): 150. |
3 | LEMASTERS J J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5. |
4 | RÜB C, WILKENING A, VOOS W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017, 367(1): 111-123. |
5 | RANDOW F, YOULE R J. Self and nonself: how autophagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411. |
6 | ROBERTS R F, TANG M Y, FON E A, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles[J]. Int J Biochem Cell Biol, 2016, 79: 427-436. |
7 | NARENDRA D P, JIN S M, TANAKA A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298. |
8 | LOU G, PALIKARAS K, LAUTRUP S, et al. Mitophagy and neuroprotection[J]. Trends Mol Med, 2020, 26(1): 8-20. |
9 | BRAAK H, BRAAK E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259. |
10 | YE X, SUN X, STAROVOYTOV V, et al. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains[J]. Hum Mol Genet, 2015, 24(10): 2938-2951. |
11 | MARTÍN-MAESTRO P, GARGINI R, PERRY G, et al. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(4): 792-806. |
12 | BORDI M, BERG M J, MOHAN P S, et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy[J]. Autophagy, 2016, 12(12): 2467-2483. |
13 | KERR J S, ADRIAANSE B A, GREIG N H, et al. Mitophagy and Alzheimer's disease: cellular and molecular mechanisms[J]. Trends Neurosci, 2017, 40(3): 151-166. |
14 | MOREIRA P I, SIEDLAK S L, WANG X, et al. Increased autophagic degradation of mitochondria in Alzheimer disease[J]. Autophagy, 2007, 3(6): 614-615. |
15 | NIXON R A. The role of autophagy in neurodegenerative disease[J]. Nat Med, 2013, 19(8): 983-997. |
16 | IVANKOVIC D, CHAU K Y, SCHAPIRA A H, et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy[J]. J Neurochem, 2016, 136(2): 388-402. |
17 | GOETZL E J, BOXER A, SCHWARTZ J B, et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease[J]. Neurology, 2015, 85(1): 40-47. |
18 | YANG D S, STAVRIDES P, MOHAN P S, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits[J]. Brain, 2011, 134(pt 1): 258-277. |
19 | NIXON R A, YANG D S. Autophagy failure in Alzheimer's disease: locating the primary defect[J]. Neurobiol Dis, 2011, 43(1): 38-45. |
20 | COFFEY E E, BECKEL J M, LATIES A M, et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP[J]. Neuroscience, 2014, 263: 111-124. |
21 | ROVIRA-LLOPIS S, BAÑULS C, DIAZ-MORALES N, et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications[J]. Redox Biol, 2017, 11: 637-645. |
22 | BERMAN S B, PINEDA F J, HARDWICK J M. Mitochondrial fission and fusion dynamics: the long and short of it[J]. Cell Death Differ, 2008, 15(7): 1147-1152. |
23 | MANCZAK M, CALKINS M J, REDDY P H. Impaired mitochondrial dynamics and abnormal interaction of amyloid β with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage[J]. Hum Mol Genet, 2011, 20(13): 2495-2509. |
24 | KANDIMALLA R, MANCZAK M, FRY D, et al. Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(22): 4881-4897. |
25 | TAMMINENI P, JEONG Y Y, FENG T, et al. Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons[J]. Hum Mol Genet, 2017, 26(22): 4352-4366. |
26 | MAGISTRETTI P J, ALLAMAN I. A cellular perspective on brain energy metabolism and functional imaging[J]. Neuron, 2015, 86(4): 883-901. |
27 | MOSCONI L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD[J]. Eur J Nucl Med Mol Imaging, 2005, 32(4): 486-510. |
28 | REDDY P H, MCWEENEY S, PARK B S, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease[J]. Hum Mol Genet, 2004, 13(12): 1225-1240. |
29 | SIMON H U, HAJ-YEHIA A, LEVI-SCHAFFER F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis, 2000, 5(5): 415-418. |
30 | FANG E F, SCHEIBYE-KNUDSEN M, CHUA K F, et al. Nuclear DNA damage signalling to mitochondria in ageing[J]. Nat Rev Mol Cell Biol, 2016, 17(5): 308-321. |
31 | ZHAO S, ZHAO J, ZHANG T, et al. Increased apoptosis in the platelets of patients with Alzheimer's disease and amnestic mild cognitive impairment[J]. Clin Neurol Neurosurg, 2016, 143: 46-50. |
32 | KUKREJA L, KUJOTH G C, PROLLA T A, et al. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2014, 9: 16. |
33 | GWON A R, PARK J S, ARUMUGAM T V, et al. Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease[J]. Aging Cell, 2012, 11(4): 559-568. |
34 | JO D G, ARUMUGAM T V, WOO H N, et al. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer's disease[J]. Neurobiol Aging, 2010, 31(6): 917-925. |
35 | 王明宇, 杨宇, 吴江. Aβ结合乙醇脱氢酶与阿尔茨海默病[J]. 中风与神经疾病杂志, 2011, 28(7): 663-665. |
36 | ZHANG F, WANG S, GAN L, et al. Protective effects and mechanisms of sirtuins in the nervous system[J]. Prog Neurobiol, 2011, 95(3): 373-395. |
37 | CHOI J, CHANDRASEKARAN K, DEMAREST T G, et al. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity[J]. Ann Clin Transl Neurol, 2014, 1(8): 589-604. |
38 | ECKERT A, NISBET R, GRIMM A, et al. March separate, strike together: role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease[J]. Biochim Biophys Acta, 2014, 1842(8): 1258-1266. |
39 | FANG E F, HOU Y J, PALIKARAS K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci, 2019, 22(3): 401-412. |
40 | FAN J, YANG X, LI J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11): 17475-17490. |
41 | WANG H, FU J, XU X, et al. Rapamycin activates mitophagy and alleviates cognitive and synaptic plasticity deficits in a mouse model of Alzheimer's disease[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(10): 1707-1713. |
42 | LONSKAYA I, HEBRON M L, DESFORGES N M, et al. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance[J]. J Mol Med (Berl), 2014, 92(4): 373-386. |
[1] | 熊雷, 易茜, 许明芳, 陈健. MRPL12在肺腺癌中的表达和预后分析[J]. 上海交通大学学报(医学版), 2021, 41(8): 1033-1040. |
[2] | 王毅, 程诚, 沈红艳, 高红艳, 戴悦宁, 易正辉. 经颅磁刺激对阿尔茨海默病患者认知功能及伴痴呆的行为精神症状疗效的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(7): 931-941. |
[3] | 韦亚忠, 薛晓梅, 何斌. 活性氧介导心肌缺血再灌注损伤的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(6): 826-829. |
[4] | 陈俊慧, 谷有全, 姚利和, 张薇, 王怀祥. 分子伴侣介导的自噬在阿尔茨海默病中作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(11): 1529-1534. |
[5] | 何海宁,张 微,严 峰,史琰琛,王静华,肖世富#,王 涛#. 阿尔茨海默病引起的轻度认知功能损害的微小RNA表达谱的生物信息学分析[J]. 上海交通大学学报(医学版), 2020, 40(9): 1174-1183. |
[6] | 陈 巍,韩 峥,邹艳丽,黄莎莎,田 霞. 溃疡性结肠炎小鼠血清miR-23a-3p和miR-27a-3p的表达水平及其作用的研究[J]. 上海交通大学学报(医学版), 2020, 40(8): 1069-1074. |
[7] | 张 童,张莹林,姚俊岩. 不同测试指标及观测时段对情景条件恐惧实验检测5XFAD转基因小鼠行为学效力的影响[J]. 上海交通大学学报(医学版), 2020, 40(6): 761-767. |
[8] | 杨硕瑶1, 2,戚紫怡3,向 军4. 线粒体Lon蛋白酶及其相关疾病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(5): 683-687. |
[9] | 何征晖1,汪 泱2,邓志锋3. 干细胞来源的细胞外囊泡修复治疗中枢神经系统疾病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(1): 134-. |
[10] | 王昊 1*,江杉 1*,龚杨明 2,刘燕 3,华丽 1,邓晓蓓 1. 大气细颗粒物通过嗅球途径导致阿尔茨海默病的机制研究进展[J]. 上海交通大学学报(医学版), 2019, 39(6): 666-. |
[11] | 方新宇 1,卢卫红 1,王慧珍 2,倪建良 3,张江涛 3,蔡军 1,李涛 4,张登峰 2,张晨 1. EGR1基因与中国汉族人群阿尔茨海默病发病风险的关联研究[J]. 上海交通大学学报(医学版), 2019, 39(2): 153-. |
[12] | 胡梦薇1,李苗苗1,黄婉莹1,王 宇1,胡勇博1,张 瑞1,侯丽娜1,陈红专1,张永芳1,王 领2,谭 文2,徐见容1,王 昊1. 基于HPLC-MS/MS法的新型双胆碱酯酶抑制剂DDDA3大鼠药代动力学研究[J]. 上海交通大学学报(医学版), 2019, 39(11): 1233-. |
[13] | 陈艳 1,方新宇 1,汪也微 1,倪建良 2,张江涛 2,卢卫红 1,李涛 3,张登峰 4,张晨 1. 中国汉族FOS基因 rs1063169多态性与阿尔茨海默病的关联性研究[J]. 上海交通大学学报(医学版), 2019, 39(1): 47-. |
[14] | 杨寰庆 1*,何祥2*,杜晓光 2,肖世富 1,王涛 1. 微环境变化对 PC12细胞淀粉样前体蛋白 β位点裂解酶 1 表达的影响[J]. 上海交通大学学报(医学版), 2018, 38(9): 1005-. |
[15] | 胡勇博 1, 2,任汝静 1,王刚 1. Rho相关的卷曲蛋白激酶 1参与 β淀粉样蛋白介导的大鼠原代神经元损伤[J]. 上海交通大学学报(医学版), 2018, 38(9): 1013-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||