上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (3): 393-399.doi: 10.3969/j.issn.1674-8115.2022.03.020
• 综述 • 上一篇
收稿日期:
2021-10-11
出版日期:
2022-03-28
发布日期:
2022-05-09
通讯作者:
吕叶辉
E-mail:zhaojh@sumhs.edu.cn;1837127618@qq.com;lvyh_15@sumhs.edu.cn
作者简介:
赵久红(1980—),女,副教授,硕士;电子信箱:zhaojh@sumhs.edu.cn。基金资助:
ZHAO Jiuhong(), TONG Jiating(), SHEN Zhijun, LÜ Yehui()
Received:
2021-10-11
Online:
2022-03-28
Published:
2022-05-09
Contact:
Lü Yehui
E-mail:zhaojh@sumhs.edu.cn;1837127618@qq.com;lvyh_15@sumhs.edu.cn
Supported by:
摘要:
环状RNA(circular RNA,circRNA)是一类共价闭环非编码RNA,广泛存在于各组织细胞中,具有重要的生物学功能。circRNA可通过与RNA结合蛋白相互作用、调节mRNA稳定性、作为竞争性内源RNA等机制,在转录或转录后水平发挥调控作用。氧化应激即体内活性氧的产生与清除失衡的一种状态,在多种疾病的发生、发展过程中起着重要作用。近期研究表明,多种circRNA在氧化应激状态下存在表达差异,并通过充当微RNA海绵等机制,调控相关炎症因子和凋亡基因的表达,进而干预氧化应激状态下细胞的存活及凋亡情况。根据调控作用结果,有circRNA可参与氧化应激造成的损伤,起到促氧化应激作用;也有circRNA通过上调抗氧化基因,降低氧化应激的影响,起到抗氧化应激作用;circRNA与氧化应激相互作用、彼此影响,共同参与多种疾病的发生和发展。该文从氧化应激概述、circRNA在各系统疾病氧化应激中的作用、circRNA与氧化应激潜在互作机制等方面进行综述,以期为相关研究提供参考。
中图分类号:
赵久红, 童佳婷, 沈郅珺, 吕叶辉. 环状RNA与氧化应激互作机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 393-399.
ZHAO Jiuhong, TONG Jiating, SHEN Zhijun, LÜ Yehui. Research progress in the mechanism of interactive regulation between circular RNA and oxidative stress[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 393-399.
Type | Marker | Abbreviation | Trend |
---|---|---|---|
Superoxide dismutase | SOD | ↓ | |
Glutathione peroxidase | GSH-Px | ↓ | |
Inducible nitric oxide synthase | iNOS | ↑ | |
Catalase | CAT | ↓ | |
Intermediate product | Reactive oxygen species | ROS | ↑ |
Nitric oxide | NO | ↑ | |
Oxidized glutathione | GSSG | ↑ | |
3-Nitrotyrosine | 3-NT | ↑ | |
End product | 8-Hydroxy-2-deoxyguanosine | 8-OHdG | ↑ |
Malondialdehyde | MDA | ↑ |
表1 研究常用的氧化应激标志物
Tab 1 Commonly used oxidative stress markers in present studies
Type | Marker | Abbreviation | Trend |
---|---|---|---|
Superoxide dismutase | SOD | ↓ | |
Glutathione peroxidase | GSH-Px | ↓ | |
Inducible nitric oxide synthase | iNOS | ↑ | |
Catalase | CAT | ↓ | |
Intermediate product | Reactive oxygen species | ROS | ↑ |
Nitric oxide | NO | ↑ | |
Oxidized glutathione | GSSG | ↑ | |
3-Nitrotyrosine | 3-NT | ↑ | |
End product | 8-Hydroxy-2-deoxyguanosine | 8-OHdG | ↑ |
Malondialdehyde | MDA | ↑ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
H2O2 | ‒ | circNCX1 | ↑ | miR-133a-3p↓; CDIP1↑ | Pro-apoptotic | [ |
H2O2 | ‒ | circHIPK2 | ↑ | miR-485-5p↓; ATG101↑ | Pro-apoptotic | [ |
ox-LDL | ROS, SOD, MDA, iNOS | circTM7SF3 circ_0007478 | ↑ | miR-206↓; ASPH, TNF-α, IL-6↑ | Pro-inflammatory Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circBPTF | ↑ | miR-384↓; LIN28B, TNF-α, IL-6, IL-1β, Bax, caspase3↑ | Pro-inflammatory Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, iNOS | circHIPK3 | ↑ | TNF-α, IL-6, Bax, CK-MB↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA | circB4GALT2 circ_0000064 | ↓ | CK-MB, Bax, caspase3↑ | Pro-apoptotic | [ |
ox-LDL | SOD, MDA | circSMARCA5 circ_0001445 | ↓ | miR-640↑; TNF-α, IL-6, IL-β, Bax, caspase3↑ | Anti-inflammatory Anti-apoptotic | [ |
ox-LDL | ‒ | circRSF1 circ_0000345 | ↓ | miR-758↑; CCND2↓; Bax, HIF-1α↑ | Anti-apoptotic | [ [ |
ox-LDL | ‒ | circCHFR circ_0029589 | ↑ | miR-424-5p↓; IGF-2↑ | Anti-apoptotic | [ |
表2 circRNA在心血管疾病氧化应激中的表达调控机制
Tab 2 Regulatory mechanism of circRNA expression under oxidative stress in cardiovascular diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
H2O2 | ‒ | circNCX1 | ↑ | miR-133a-3p↓; CDIP1↑ | Pro-apoptotic | [ |
H2O2 | ‒ | circHIPK2 | ↑ | miR-485-5p↓; ATG101↑ | Pro-apoptotic | [ |
ox-LDL | ROS, SOD, MDA, iNOS | circTM7SF3 circ_0007478 | ↑ | miR-206↓; ASPH, TNF-α, IL-6↑ | Pro-inflammatory Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circBPTF | ↑ | miR-384↓; LIN28B, TNF-α, IL-6, IL-1β, Bax, caspase3↑ | Pro-inflammatory Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, iNOS | circHIPK3 | ↑ | TNF-α, IL-6, Bax, CK-MB↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA | circB4GALT2 circ_0000064 | ↓ | CK-MB, Bax, caspase3↑ | Pro-apoptotic | [ |
ox-LDL | SOD, MDA | circSMARCA5 circ_0001445 | ↓ | miR-640↑; TNF-α, IL-6, IL-β, Bax, caspase3↑ | Anti-inflammatory Anti-apoptotic | [ |
ox-LDL | ‒ | circRSF1 circ_0000345 | ↓ | miR-758↑; CCND2↓; Bax, HIF-1α↑ | Anti-apoptotic | [ [ |
ox-LDL | ‒ | circCHFR circ_0029589 | ↑ | miR-424-5p↓; IGF-2↑ | Anti-apoptotic | [ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
Paraquat | ‒ | circSLC8A1 | ↑ | SLC8A1↓ | Pro-apoptotic | [ |
Glu | ROS | circFoxO3 | ↑ | BimEL, cytochrome, caspase3↑ | Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circASCC3 circ_0006872 | ↑ | miR-145-5p↓; NF-κB↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circANKRD11 | ↑ | miR-145-5p↓; Bax, caspase3, TNF-α, IL-6, IL-β↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | SOD, MDA | circRBMS1 | ↑ | miR-197-3p↓; Bax, TNF-α, IL-β, FBXO11↑ | Pro-inflammatory Pro-apoptotic | [ |
H2O2 | ‒ | circPRKCI | ↓ | miR-545/miR-589↑; E2F7↓; caspase3, caspase9↑ | Anti-apoptotic | [ |
表3 circRNA在神经系统及肺疾病氧化应激中的表达调控机制
Tab 3 Regulatory mechanism of circRNA expression under oxidative stress in neurological disorders and lung diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
Paraquat | ‒ | circSLC8A1 | ↑ | SLC8A1↓ | Pro-apoptotic | [ |
Glu | ROS | circFoxO3 | ↑ | BimEL, cytochrome, caspase3↑ | Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circASCC3 circ_0006872 | ↑ | miR-145-5p↓; NF-κB↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circANKRD11 | ↑ | miR-145-5p↓; Bax, caspase3, TNF-α, IL-6, IL-β↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | SOD, MDA | circRBMS1 | ↑ | miR-197-3p↓; Bax, TNF-α, IL-β, FBXO11↑ | Pro-inflammatory Pro-apoptotic | [ |
H2O2 | ‒ | circPRKCI | ↓ | miR-545/miR-589↑; E2F7↓; caspase3, caspase9↑ | Anti-apoptotic | [ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
CLP | ROS, SOD, MDA, GSH, CAT | circTLK1 | ↑ | miR-106a-5p↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA, CAT | circAKT3 | ↑ | miR-144-5p↓; caspase3, Bax ↑ | Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circLRP6 | ↑ | miR-205↓; HMGB1, p-NF‐κB↑ | Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, GSH, CAT | circVMA21 | ↓ | miR-9-3p↑; SMG1↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Anti-inflammatory Anti-apoptotic | [ |
表4 circRNA在肾疾病氧化应激中的表达调控机制
Tab 4 Regulatory mechanism of circRNA expression under oxidative stress in kidney diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
CLP | ROS, SOD, MDA, GSH, CAT | circTLK1 | ↑ | miR-106a-5p↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA, CAT | circAKT3 | ↑ | miR-144-5p↓; caspase3, Bax ↑ | Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circLRP6 | ↑ | miR-205↓; HMGB1, p-NF‐κB↑ | Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, GSH, CAT | circVMA21 | ↓ | miR-9-3p↑; SMG1↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Anti-inflammatory Anti-apoptotic | [ |
1 | SHI Y, JIA X, XU J. The new function of circRNA: translation[J]. Clin Transl Oncol, 2020, 22(12): 2162-2169. |
2 | HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495 (7441): 384-388. |
3 | ABU N, JAMAL R. Circular RNAs as promising biomarkers: a mini-review[J]. Front Physiol, 2016, 7: 355. |
4 | ĎURAČKOVÁ Z. Some current insights into oxidative stress[J]. Physiol Res, 2010, 59(4): 459-469. |
5 | CHEESEMAN K H, SLATER T F. An introduction to free radical biochemistry[J]. Br Med Bull, 1993, 49(3): 481-493. |
6 | PERSSON T, POPESCU B O, CEDAZO-MINGUEZ A. Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail?[J]. Oxid Med Cell Longev, 2014, 2014: 427318. |
7 | COBLEY J N, FIORELLO M L, BAILEY D M. 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15: 490-503. |
8 | SHEN Y H, WU Q, SHI J S, et al. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease[J]. Biomed Pharmacother, 2020, 132: 110928. |
9 | ALTESHA M A, NI T, KHAN A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234(5): 5588-5600. |
10 | KAMADA Y, ITO S, KAMEKAWA D, et al. Increased physical activity prevents the progress of arteriosclerosis by reducing advanced glycation end products and oxidative stress in patients with diabetes mellitus, hypertension, and/or dyslipid[J]. Eur Heart J, 2013, 34(suppl 1): P3395. |
11 | SHARMA P, FENTON A, DIAS I H K, et al. Oxidative stress links periodontal inflammation and renal function[J]. J Clin Periodontol, 2021, 48(3): 357-367. |
12 | XUE M, PENG N N, ZHU X E, et al. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis[J]. Biochem Biophys Res Commun, 2021, 534: 553-560. |
13 | DEMIRCI-ÇEKIÇ S, ÖZKAN G, AVAN A N, et al. Biomarkers of oxidative stress and antioxidant defense[J]. J Pharm Biomed Anal, 2022, 209: 114477. |
14 | OSAWA T. Development and application of oxidative stress biomarkers[J]. Biosci Biotechnol Biochem, 2018, 82(4): 564-572. |
15 | AL-SALEH I, AL-SEDAIRI A A, ELKHATIB R. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children[J]. Sci Total Environ, 2012, 431: 188-196. |
16 | CARDENAS J, BALAJI U, GU J H. Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions[J]. Sci Rep, 2020, 10(1): 22165. |
17 | ENGEDAL N, ŽEROVNIK E, RUDOV A, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs[J]. Oxidative Med Cell Longev, 2018, 2018: 4968321. |
18 | YAN J Y, YANG Y L, FAN X H, et al. Sp1-mediated circRNA circHipk2 regulates myogenesis by targeting ribosomal protein Rpl7[J]. Genes, 2021, 12(5): 696. |
19 | LI M Y, DING W, TARIQ M A, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p[J]. Theranostics, 2018, 8(21): 5855-5869. |
20 | ZHOU J L, LI L W, HU H, et al. Circ-HIPK2 accelerates cell apoptosis and autophagy in myocardial oxidative injury by sponging miR-485-5p and targeting ATG101[J]. J Cardiovasc Pharmacol, 2020, 76(4): 427-436. |
21 | WANG X J, BAI M. CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro[J]. BMC Cardiovasc Disord, 2021, 21(1): 51. |
22 | ZHANG W, SUI Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells[J]. Mol Cell Biochem, 2020, 471(1/2): 101-111. |
23 | FAN S Y, HU K L, ZHANG D Y, et al. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes[J]. Ann Transl Med, 2020, 8(18): 1147. |
24 | JIN P, LI L H, SHI Y, et al. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury[J]. Gene, 2021, 767: 145075. |
25 | CAI Y L, XU L, XU C X, et al. Hsa_circ_0001445 inhibits ox-LDL-induced HUVECs inflammation, oxidative stress and apoptosis by regulating miRNA-640[J]. Perfusion, 2022, 37(1): 86-94. |
26 | LIU H F, MA X W, WANG X, et al. Hsa_circ_0000345 regulates the cellular development of ASMCs in response to oxygenized low-density lipoprotein[J]. J Cell Mol Med, 2020, 24(20): 11849-11857. |
27 | WEI Z H, RAN H Z, YANG C H. CircRSF1 contributes to endothelial cell growth, migration and tube formation under ox-LDL stress through regulating miR-758/CCND2 axis[J]. Life Sci, 2020, 259: 118241. |
28 | YU H, ZHAO L S, ZHAO Y, et al. Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424-5p/IGF2 axis[J]. Vascul Pharmacol, 2020, 135: 106782. |
29 | COLLABORATORS GBD2CRD. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990‒2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Respir Med, 2017, 5(9): 691-706. |
30 | MEHTA S L, DEMPSEY R J, VEMUGANTI R. Role of circular RNAs in brain development and CNS diseases[J]. Prog Neurobiol, 2020, 186: 101746. |
31 | LU G P, ZHANG J J, LIU X Y, et al. Regulatory network of two circRNAs and an miRNA with their targeted genes under astilbin treatment in pulmonary fibrosis[J]. J Cell Mol Med, 2019, 23(10): 6720-6729. |
32 | HANAN M, SIMCHOVITZ A, YAYON N, et al. A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress[J]. EMBO Mol Med, 2020, 12(9): e11942. |
33 | LIN S P, HU J S, WEI J X, et al. Silencing of circFoxO3 protects HT22 cells from glutamate-induced oxidative injury via regulating the mitochondrial apoptosis pathway[J]. Cell Mol Neurobiol, 2020, 40(7): 1231-1242. |
34 | WANG Z, ZUO Y Q, GAO Z H. CircANKRD11 knockdown protects HPMECs from cigarette smoke extract-induced injury by regulating miR-145-5p/BRD4 axis[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 887-899. |
35 | QIAO D, HU C, LI Q Y, et al. Circ-RBMS1 knockdown alleviates CSE-induced apoptosis, inflammation and oxidative stress via up-regulating FBXO11 through miR-197-3p in 16HBE cells[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 2105-2118. |
36 | CHENG Q T, CAO X Y, XUE L J, et al. CircPRKCI-miR-545/589-E2F7 axis dysregulation mediates hydrogen peroxide-induced neuronal cell injury[J]. Biochem Biophys Res Commun, 2019, 514(2): 428-435. |
37 | XU H P, MA X Y, YANG C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis[J]. Front Mol Biosci, 2021, 8: 660269. |
38 | XU Y, JIANG W, ZHONG L, et al. Circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress[J]. J Cell Mol Med, 2020: 2020Nov16. |
39 | CHEN B, LI Y H, LIU Y, et al. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells[J]. J Cell Physiol, 2019, 234(11): 21249-21259. |
40 | SHI Y, SUN C F, GE W H, et al. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress[J]. J Cell Mol Med, 2020, 24(19): 11397-11408. |
41 | LI Y, CHENG T, WAN C L, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J]. Gene, 2020, 747: 144653. |
42 | YANG Y T, SHEN P Y, YAO T, et al. Novel role of circRSU1 in the progression of osteoarthritis by adjusting oxidative stress[J]. Theranostics, 2021, 11(4): 1877-1900. |
43 | SONG I S, TATEBE S, DAI W P, et al. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling[J]. J Biol Chem, 2005, 280(31): 28230-28240. |
44 | BARCHOWSKY A, DUDEK E J, TREADWELL M D, et al. Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells[J]. Free Radic Biol Med, 1996, 21(6): 783-790. |
45 | RADULOVIC M, BAQADER N O, STOEBER K, et al. Spatial cross-talk between oxidative stress and DNA replication in human fibroblasts[J]. J Proteome Res, 2016, 15(6): 1907-1938. |
46 | WANG Y B, REN F H, SUN D W, et al. CircKEAP1 suppresses the progression of lung adenocarcinoma via the miR-141-3p/KEAP1/NRF2 axis[J]. Front Oncol, 2021, 11: 672586. |
47 | LIU Z Q, HE Q M, LIU Y, et al. Hsa_circ_0005915 promotes N, N-dimethylformamide-induced oxidative stress in HL-7702 cells through NRF2/ARE axis[J]. Toxicology, 2021, 458: 152838. |
[1] | 陈威存, 苑影, 柯碧莲. 近视相关非编码RNA的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 369-374. |
[2] | 陈仪婷, 赵安达, 李荣, 康文慧, 李生慧. 循环外泌体微RNA在支气管哮喘中的作用综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 375-380. |
[3] | 毛久昂, 翁震, 钮晓音, 何杨, 王振欣. Tmprss6基因对小鼠放射性肠损伤的影响[J]. 上海交通大学学报(医学版), 2021, 41(9): 1175-1182. |
[4] | 万淑君, 孔祥, 吕坤. 非编码RNA与糖尿病血管病变的关系[J]. 上海交通大学学报(医学版), 2021, 41(5): 665-670. |
[5] | 杨润泽, 许文宁, 郑火亮, 蒋盛旦. 脐静脉内皮细胞外泌体对炎症因子刺激下前软骨细胞凋亡的影响[J]. 上海交通大学学报(医学版), 2021, 41(2): 147-153. |
[6] | 傅中懋, 罗再, 戎泽印, 章建明, 李腾飞, 余志龙, 黄陈. 基于高通量测序的结直肠癌组织中环状RNA功能研究与预后分析[J]. 上海交通大学学报(医学版), 2021, 41(2): 187-195. |
[7] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
[8] | 吴静, 李学义, 陈京红, 王泽剑. 抑郁模型小鼠海马中胆汁酸受体变化的研究[J]. 上海交通大学学报(医学版), 2021, 41(12): 1628-1634. |
[9] | 王昱欢, 丁奕岑, 蔡瑶雨, 康亚妮. 差异表达微RNA作为多囊卵巢综合征生物标志物的研究[J]. 上海交通大学学报(医学版), 2021, 41(11): 1429-1435. |
[10] | 岳犇, 王高明, 杨鹿笛, 崔然, 郁丰荣. 胃癌患者预后相关微RNA预测模型的构建及其应用价值探讨[J]. 上海交通大学学报(医学版), 2021, 41(11): 1436-1445. |
[11] | 张 靖. 川楝素通过下调环状RNA circDLST对胃癌细胞BGC-823的抑制作用[J]. 上海交通大学学报(医学版), 2020, 40(9): 1202-1206. |
[12] | 和 斌,李祺越,洪 岭,伍园园,滕晓明,唐传玲. SIRT1对H2O2诱导的人卵巢颗粒细胞氧化应激损伤的影响[J]. 上海交通大学学报(医学版), 2020, 40(12): 1591-1597. |
[13] | 王立峰,陈俊杰,李永宁,王 玲,王 磊,李雪娇. 姜黄素对心脏停搏/心肺复苏大鼠肠黏膜损伤的抑制作用[J]. 上海交通大学学报(医学版), 2020, 40(12): 1607-1613. |
[14] | 陆海洋,赵维莅. 胃肠道微生物在肿瘤发生中的作用[J]. 上海交通大学学报(医学版), 2019, 39(9): 1083-. |
[15] | 杨双双 1*,高天行 2*,何萱 1,张瑞 1,张永芳 1. 知母皂苷元对 H 2O2损伤 SH-SY5Y细胞中脑源性神经营养 因子的调控及机制研究[J]. 上海交通大学学报(医学版), 2019, 39(6): 578-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||