| 1 |
JIA L, DU Y, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
|
| 2 |
CAI Q, JEONG Y Y. Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases[J]. Cells, 2020, 9(1): 150.
|
| 3 |
LEMASTERS J J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
|
| 4 |
RÜB C, WILKENING A, VOOS W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017, 367(1): 111-123.
|
| 5 |
RANDOW F, YOULE R J. Self and nonself: how autophagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411.
|
| 6 |
ROBERTS R F, TANG M Y, FON E A, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles[J]. Int J Biochem Cell Biol, 2016, 79: 427-436.
|
| 7 |
NARENDRA D P, JIN S M, TANAKA A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
|
| 8 |
LOU G, PALIKARAS K, LAUTRUP S, et al. Mitophagy and neuroprotection[J]. Trends Mol Med, 2020, 26(1): 8-20.
|
| 9 |
BRAAK H, BRAAK E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259.
|
| 10 |
YE X, SUN X, STAROVOYTOV V, et al. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains[J]. Hum Mol Genet, 2015, 24(10): 2938-2951.
|
| 11 |
MARTÍN-MAESTRO P, GARGINI R, PERRY G, et al. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(4): 792-806.
|
| 12 |
BORDI M, BERG M J, MOHAN P S, et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy[J]. Autophagy, 2016, 12(12): 2467-2483.
|
| 13 |
KERR J S, ADRIAANSE B A, GREIG N H, et al. Mitophagy and Alzheimer's disease: cellular and molecular mechanisms[J]. Trends Neurosci, 2017, 40(3): 151-166.
|
| 14 |
MOREIRA P I, SIEDLAK S L, WANG X, et al. Increased autophagic degradation of mitochondria in Alzheimer disease[J]. Autophagy, 2007, 3(6): 614-615.
|
| 15 |
NIXON R A. The role of autophagy in neurodegenerative disease[J]. Nat Med, 2013, 19(8): 983-997.
|
| 16 |
IVANKOVIC D, CHAU K Y, SCHAPIRA A H, et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy[J]. J Neurochem, 2016, 136(2): 388-402.
|
| 17 |
GOETZL E J, BOXER A, SCHWARTZ J B, et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease[J]. Neurology, 2015, 85(1): 40-47.
|
| 18 |
YANG D S, STAVRIDES P, MOHAN P S, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits[J]. Brain, 2011, 134(pt 1): 258-277.
|
| 19 |
NIXON R A, YANG D S. Autophagy failure in Alzheimer's disease: locating the primary defect[J]. Neurobiol Dis, 2011, 43(1): 38-45.
|
| 20 |
COFFEY E E, BECKEL J M, LATIES A M, et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP[J]. Neuroscience, 2014, 263: 111-124.
|
| 21 |
ROVIRA-LLOPIS S, BAÑULS C, DIAZ-MORALES N, et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications[J]. Redox Biol, 2017, 11: 637-645.
|
| 22 |
BERMAN S B, PINEDA F J, HARDWICK J M. Mitochondrial fission and fusion dynamics: the long and short of it[J]. Cell Death Differ, 2008, 15(7): 1147-1152.
|
| 23 |
MANCZAK M, CALKINS M J, REDDY P H. Impaired mitochondrial dynamics and abnormal interaction of amyloid β with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage[J]. Hum Mol Genet, 2011, 20(13): 2495-2509.
|
| 24 |
KANDIMALLA R, MANCZAK M, FRY D, et al. Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(22): 4881-4897.
|
| 25 |
TAMMINENI P, JEONG Y Y, FENG T, et al. Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons[J]. Hum Mol Genet, 2017, 26(22): 4352-4366.
|
| 26 |
MAGISTRETTI P J, ALLAMAN I. A cellular perspective on brain energy metabolism and functional imaging[J]. Neuron, 2015, 86(4): 883-901.
|
| 27 |
MOSCONI L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD[J]. Eur J Nucl Med Mol Imaging, 2005, 32(4): 486-510.
|
| 28 |
REDDY P H, MCWEENEY S, PARK B S, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease[J]. Hum Mol Genet, 2004, 13(12): 1225-1240.
|
| 29 |
SIMON H U, HAJ-YEHIA A, LEVI-SCHAFFER F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis, 2000, 5(5): 415-418.
|
| 30 |
FANG E F, SCHEIBYE-KNUDSEN M, CHUA K F, et al. Nuclear DNA damage signalling to mitochondria in ageing[J]. Nat Rev Mol Cell Biol, 2016, 17(5): 308-321.
|
| 31 |
ZHAO S, ZHAO J, ZHANG T, et al. Increased apoptosis in the platelets of patients with Alzheimer's disease and amnestic mild cognitive impairment[J]. Clin Neurol Neurosurg, 2016, 143: 46-50.
|
| 32 |
KUKREJA L, KUJOTH G C, PROLLA T A, et al. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2014, 9: 16.
|
| 33 |
GWON A R, PARK J S, ARUMUGAM T V, et al. Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease[J]. Aging Cell, 2012, 11(4): 559-568.
|
| 34 |
JO D G, ARUMUGAM T V, WOO H N, et al. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer's disease[J]. Neurobiol Aging, 2010, 31(6): 917-925.
|
| 35 |
王明宇, 杨宇, 吴江. Aβ结合乙醇脱氢酶与阿尔茨海默病[J]. 中风与神经疾病杂志, 2011, 28(7): 663-665.
|
| 36 |
ZHANG F, WANG S, GAN L, et al. Protective effects and mechanisms of sirtuins in the nervous system[J]. Prog Neurobiol, 2011, 95(3): 373-395.
|
| 37 |
CHOI J, CHANDRASEKARAN K, DEMAREST T G, et al. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity[J]. Ann Clin Transl Neurol, 2014, 1(8): 589-604.
|
| 38 |
ECKERT A, NISBET R, GRIMM A, et al. March separate, strike together: role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease[J]. Biochim Biophys Acta, 2014, 1842(8): 1258-1266.
|
| 39 |
FANG E F, HOU Y J, PALIKARAS K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci, 2019, 22(3): 401-412.
|
| 40 |
FAN J, YANG X, LI J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11): 17475-17490.
|
| 41 |
WANG H, FU J, XU X, et al. Rapamycin activates mitophagy and alleviates cognitive and synaptic plasticity deficits in a mouse model of Alzheimer's disease[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(10): 1707-1713.
|
| 42 |
LONSKAYA I, HEBRON M L, DESFORGES N M, et al. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance[J]. J Mol Med (Berl), 2014, 92(4): 373-386.
|