
上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (4): 500-506.doi: 10.3969/j.issn.1674-8115.2023.04.014
收稿日期:2022-12-08
接受日期:2022-02-24
出版日期:2023-04-28
发布日期:2023-04-28
通讯作者:
董晓艳,电子信箱:dongxy@shchildren.com.cn。作者简介:朱思宇(1997—),女,硕士生;电子信箱:juicy0217@163.com。
基金资助:Received:2022-12-08
Accepted:2022-02-24
Online:2023-04-28
Published:2023-04-28
Contact:
DONG Xiaoyan, E-mail: dongxy@shchildren.com.cn.Supported by:摘要:
小气道功能障碍(small airway dysfunction,SAD)广泛存在于儿童哮喘的多个阶段,以气道炎症、气道重塑、气道高反应性为基础,其中气道炎症是SAD的主要病理特征。近年来研究发现,参与小气道病变进展的免疫细胞,如2型固有淋巴细胞(type 2 innate lymphoid cell,ILC2)、巨噬细胞、粒细胞等,在哮喘相关的临床控制和靶向治疗中发挥重要的作用。同时,随着脉冲振荡技术和呼出气一氧化氮检测等临床检测技术的不断完善,SAD与儿童哮喘早期发生和发展有关的证据也越来越多。针对小气道的超细颗粒气雾剂和单克隆抗体靶向药物研制为哮喘精准控制提供了新的手段。因此,小气道在哮喘等慢性呼吸系统疾病中的功能近年来受到广泛关注。既往研究表明,SAD会增加儿童哮喘不受控制的风险,但往往易被忽视。该文从发病机制、诊断评估和治疗3个方面阐述SAD及儿童哮喘的最新研究进展,希冀为以小气道为治疗靶点的长期哮喘管理提供新的视角及认识。
中图分类号:
朱思宇, 董晓艳. 哮喘儿童小气道功能障碍的再认识[J]. 上海交通大学学报(医学版), 2023, 43(4): 500-506.
ZHU Siyu, DONG Xiaoyan. New insights in small airway dysfunction of childhood asthma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 500-506.
| 1 | DHARMAGE S C, PERRET J L, CUSTOVIC A. Epidemiology of asthma in children and adults[J]. Front Pediatr, 2019, 7: 246. |
| 2 | RAMRATNAM S K, BACHARIER L B, GUILBERT T W. Severe asthma in children[J]. J Allergy Clin Immunol Pract, 2017, 5(4): 889-898. |
| 3 | USMANI O S, SINGH D, SPINOLA M, et al. The prevalence of small airways disease in adult asthma: a systematic literature review[J]. Respir Med, 2016, 116: 19-27. |
| 4 | ABDO M, TRINKMANN F, KIRSTEN A M, et al. Small airway dysfunction links asthma severity with physical activity and symptom control[J]. J Allergy Clin Immunol Pract, 2021, 9(9): 3359-3368.e1. |
| 5 | KOEFOED H J L, ZWITSERLOOT A M, VONK J M, et al. Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: a systematic literature review[J]. Pediatr Allergy Immunol, 2021, 32(6): 1238-1254. |
| 6 | 朱蕾. 临床呼吸生理学[M]. 上海: 上海科学技术出版社, 2020: 96-97. |
| ZHU L. Clinical respiratory physiology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2020: 96-97. | |
| 7 | 徐康乔, 夏元旦, 徐丽, 等. 嗜酸性粒细胞及中性粒细胞型哮喘患者炎症特点与小气道功能变化分析[J]. 中国综合临床, 2022, 38(3): 256-261. |
| XU K J, XIA Y D, XU L, et al. Analysis of inflammatory characteristics and changes in small airway function in patients with eosinophil and neutrophilic asthma[J]. Clinical Medicine of China, 2022, 38(3): 256-261. | |
| 8 | HE X Y, SIMPSON J L, WANG F. Inflammatory phenotypes in stable and acute childhood asthma[J]. Paediatr Respir Rev, 2011, 12(3): 165-169. |
| 9 | HAMMAD H, LAMBRECHT B N. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. |
| 10 | ZINELLU E, PIRAS B, RUZITTU G G M, et al. Recent advances in inflammation and treatment of small airways in asthma[J]. Int J Mol Sci, 2019, 20(11): 2617. |
| 11 | ABDO M, TRINKMANN F, KIRSTEN A M, et al. The relevance of small airway dysfunction in asthma with nocturnal symptoms[J]. J Asthma Allergy, 2021, 14: 897-905. |
| 12 | NAGAKUMAR P, DENNEY L, FLEMING L, et al. Type 2 innate lymphoid cells in induced sputum from children with severe asthma[J]. J Allergy Clin Immunol, 2016, 137(2): 624-626.e6. |
| 13 | LIU T, WU J, ZHAO J, et al. Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma[J]. Respir Med, 2015, 109(11): 1391-1396. |
| 14 | KATO A. Group 2 innate lymphoid cells in airway diseases[J]. Chest, 2019, 156(1): 141-149. |
| 15 | SUI P F, WIESNER D L, XU J H, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses[J]. Science, 2018, 360(6393): eaan8546. |
| 16 | ZHU X Y, CUI J, YI L, et al. The role of T cells and macrophages in asthma pathogenesis: a new perspective on mutual crosstalk[J]. Mediators Inflamm, 2020, 2020: 7835284. |
| 17 | AKTAR A, SHAN L Y, KOUSSIH L, et al. PlexinD1 deficiency in lung interstitial macrophages exacerbates house dust mite-induced allergic asthma[J]. J Immunol, 2022, 208(5): 1272-1279. |
| 18 | CUI Z, FENG Y, LI D Q, et al. Activation of aryl hydrocarbon receptor (AhR) in mesenchymal stem cells modulates macrophage polarization in asthma[J]. J Immunotoxicol, 2020, 17(1): 21-30. |
| 19 | ALOBAIDI A H, ALSAMARAI A M, ALSAMARAI M A. Inflammation in asthma pathogenesis: role of T cells, macrophages, epithelial cells and type 2 inflammation[J]. Antiinflamm Antiallergy Agents Med Chem, 2021, 20(4): 317-332. |
| 20 | ABDELAZIZ M H, ABDELWAHAB S F, WAN J, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma[J]. J Transl Med, 2020, 18(1): 58. |
| 21 | HASTIE A T, MAUGER D T, DENLINGER L C, et al. Baseline sputum eosinophil + neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort[J]. J Allergy Clin Immunol, 2020, 146(1): 222-226. |
| 22 | BU T, WANG L F, YIN Y Q. How do innate immune cells contribute to airway remodeling in COPD progression?[J]. Int J Chron Obstruct Pulmon Dis, 2020, 15: 107-116. |
| 23 | HABENER A, GRYCHTOL R, GAEDCKE S, et al. IgA+ memory B-cells are significantly increased in patients with asthma and small airway dysfunction[J]. Eur Respir J, 2022, 60(5): 2102130. |
| 24 | FANG L, ROTH M. Airway wall remodeling in childhood asthma: a personalized perspective from cell type-specific biology[J]. J Pers Med, 2021, 11(11): 1229. |
| 25 | JOHNSON M T, BENSON J C, PATHAK T, et al. The airway smooth muscle sodium/calcium exchanger NCLX is critical for airway remodeling and hyperresponsiveness in asthma[J]. J Biol Chem, 2022, 298(8): 102259. |
| 26 | DOLHNIKOFF M, DA SILVA L F, DE ARAUJO B B, et al. The outer wall of small airways is a major site of remodeling in fatal asthma[J]. J Allergy Clin Immunol, 2009, 123(5): 1090-1097.e1. |
| 27 | SUN Y, SHI Z Q, LIU B, et al. YKL-40 mediates airway remodeling in asthma via activating FAK and MAPK signaling pathway[J]. Cell Cycle, 2020, 19(11): 1378-1390. |
| 28 | O'REILLY R, ULLMANN N, IRVING S, et al. Increased airway smooth muscle in preschool wheezers who have asthma at school age[J]. J Allergy Clin Immunol, 2013, 131(4): 1024-1032, 1032.e1-1032.e16. |
| 29 | LI J, WANG X Y, SU Y F, et al. TRIM33 modulates inflammation and airway remodeling of PDGF-BB-induced airway smooth-muscle cells by the Wnt/β-catenin pathway[J]. Int Arch Allergy Immunol, 2022, 183(10): 1127-1136. |
| 30 | THAKORE P, EARLEY S. STIM1 is the key that unlocks airway smooth muscle remodeling and hyperresponsiveness during asthma[J]. Cell Calcium, 2022, 104: 102589. |
| 31 | MANSON M L, SÄFHOLM J, JAMES A, et al. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways[J]. J Allergy Clin Immunol, 2020, 145(3): 808-817.e2. |
| 32 | GEBSKI E B, ANASPURE O, PANETTIERI R A, et al. Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction[J]. Minerva Med, 2022, 113(1): 4-16. |
| 33 | CHIBA Y, SUTO W, SAKAI H. Augmented Pla2g4c/Ptgs2/Hpgds axis in bronchial smooth muscle tissues of experimental asthma[J]. PLoS One, 2018, 13(8): e0202623. |
| 34 | 苗青, 张静. 生后早期过敏原暴露对哮喘小鼠气道炎症及气道高反应性的影响[J]. 中华微生物学和免疫学杂志, 2021, 41(12): 927-933. |
| MIAO Q, ZHANG J. Effects of early postnatal allergen exposure on airway inflammation and airway hyperresponsiveness in asthmatic mice[J]. Chinese Journal of Microbiology and Immunology, 2021, 41(12): 927-933. | |
| 35 | KOZIOL-WHITE C J, GHOSH A, SANDNER P, et al. Soluble guanylate cyclase agonists induce bronchodilation in human small airways[J]. Am J Respir Cell Mol Biol, 2020, 62(1): 43-48. |
| 36 | CHEN Y L, HUANG H Y, LEE C C, et al. Small interfering RNA targeting nerve growth factor alleviates allergic airway hyperresponsiveness[J]. Mol Ther Nucleic Acids, 2014, 3: e158. |
| 37 | ALMESHARI M A, ALOBAIDI N Y, SAPEY E, et al. Small airways response to bronchodilators in adults with asthma or COPD: a systematic review[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 3065-3082. |
| 38 | 赵珊, 王浩彦. 小气道功能与气道高反应性的相关性分析[J]. 国际呼吸杂志, 2016, 36(12): 930-935. |
| ZHAO S, WANG H Y. Correlation between small airway function and airway hyperresponsiveness[J]. International Journal of Respiration, 2016, 36(12): 930-935. | |
| 39 | RAJI H, HADDADZADEH SHOUSHTARI M, IDANI E, et al. Forced expiratory flow at 25‒75% as a marker for airway hyper responsiveness in adult patients with asthma-like symptoms[J]. Tanaffos, 2018, 17(2): 90-95. |
| 40 | 曹菊英, 杨希晨, 刘桂华, 等. 支气管哮喘儿童肺功能检测与评价[J]. 临床肺科杂志, 2011, 16(11): 1703-1704. |
| CAO J Y, YANG X C, LIU G H, et al. Pulmonary function testing and evaluation in children with bronchial asthma[J]. Journal of Clinical Pulmonary Medicine, 2011, 16(11): 1703-1704. | |
| 41 | QIN R, AN J, XIE J, et al. FEF25-75% is a more sensitive measure reflecting airway dysfunction in patients with asthma: a comparison study using FEF25‒75% and FEV1%[J]. J Allergy Clin Immunol Pract, 2021, 9(10): 3649-3659.e6. |
| 42 | 柴小艺, 冯雍, 蔡栩栩. 肺功能小气道功能评价在儿童哮喘中的应用进展[J]. 国际儿科学杂志, 2022, 49(4): 254-257. |
| CHAI X Y, FENG Y, CAI X X. Advances in the evaluation of small airway function of lung function in childhood asthma[J]. International Journal of Pediatrics, 2022, 49(4): 254-257. | |
| 43 | CALVERLEY P M A, FARRÉ R. Oscillometry: old physiology with a bright future[J]. Eur Respir J, 2020, 56(3): 2001815. |
| 44 | LAUHKONEN E, RIIKONEN R, TÖRMÄNEN S, et al. Impulse oscillometry at preschool age is a strong predictor of lung function by flow-volume spirometry in adolescence[J]. Pediatr Pulmonol, 2018, 53(5): 552-558. |
| 45 | 上海市医学会儿科学分会呼吸学组, 上海儿童医学中心儿科医疗联合体(浦东), 上海智慧儿科临床诊治技术工程技术研究中心. 儿童哮喘小气道功能障碍评估及治疗专家共识[J]. 中华实用儿科临床杂志, 2021, 36(23): 1761-1768. |
| Respiratory Group of Pediatric Branch of Shanghai Medical Association, Shanghai Children's Medical Center Pediatric Medical Complex (Shanghai), Pediatric Artificial Intelligence Clinical Application and Research Center, Shanghai Children's Medical Center. Expert consensus on the evaluation and treatment of small airway dysfunction in childhood with asthma[J]. Chinese Journal of Applied Clinical Pediatrics, 2021, 36(23): 1761-1768. | |
| 46 | LIN L M, CHANG Y J, YANG K D, et al. Small airway dysfunction measured by impulse oscillometry and fractional exhaled nitric oxide is associated with asthma control in children[J]. Front Pediatr, 2022, 10: 877681. |
| 47 | FUJISAWA T, YASUI H, AKAMATSU T, et al. Alveolar nitric oxide concentration reflects peripheral airway obstruction in stable asthma[J]. Respirology, 2013, 18(3): 522-527. |
| 48 | BARRIOS J, AI X B. Neurotrophins in asthma[J]. Curr Allergy Asthma Rep, 2018, 18(2): 10. |
| 49 | ROBINSON P D, SALIMI F, COWIE C T, et al. Ultrafine particle exposure and biomarkers of effect on small airways in children[J]. Environ Res, 2022, 214(Pt 1): 113860. |
| 50 | BERRY M, HARGADON B, MORGAN A, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma[J]. Eur Respir J, 2005, 25(6): 986-991. |
| 51 | HOPP R J, WILSON M C, PASHA M A. Small airway disease in pediatric asthma: the who, what, when, where, why, and how to remediate. A review and commentary[J]. Clin Rev Allergy Immuno, 2022, 62(1): 145-159. |
| 52 | WANG T Y, ZHOU Q L, SHANG Y X. MiRNA-451a inhibits airway remodeling by targeting cadherin 11 in an allergic asthma model of neonatal mice[J]. Int Immunopharmacol, 2020, 83: 106440. |
| 53 | YANG Z C, QU Z H, YI M J, et al. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma[J]. J Cell Physiol, 2019, 234(6): 8804-8814. |
| 54 | JIA Y, FANG X, ZHU X H, et al. IL-13+ type 2 innate lymphoid cells correlate with asthma control status and treatment response[J]. Am J Respir Cell Mol Biol, 2016, 55(5): 675-683. |
| 55 | AKKOC T. Mesenchymal stem cells in asthma[J]. Adv Exp Med Biol, 2020, 1247: 101-108. |
| [1] | 超声引导儿童神经阻滞中国专家共识(2025版)编写组. 超声引导儿童神经阻滞中国专家共识(2025版)[J]. 上海交通大学学报(医学版), 2025, 45(9): 1079-1098. |
| [2] | 王治琪, 王莹. 儿童炎症性肠病相关贫血的诊治研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1232-1238. |
| [3] | 蒋婕, 张泓, 伦赫远, 潘芬, 于方圆, 何平. 儿童肺炎克雷伯菌感染分子流行病学特征[J]. 上海交通大学学报(医学版), 2025, 45(8): 1027-1034. |
| [4] | 何晨, 颜斯蕾, 周维涛, 凌勇, 于宁宁, 蒋鲲, 钱莉玲. 囊性纤维化合并变应性支气管肺曲菌病的临床分析及文献整合研究[J]. 上海交通大学学报(医学版), 2025, 45(8): 1066-1073. |
| [5] | 陆晔峰, 高磊青, 倪晓筱, 富晶晶. 儿童肝移植术后早期血糖及血脂的多时间点监测与影响因素分析[J]. 上海交通大学学报(医学版), 2025, 45(4): 443-451. |
| [6] | 刘田恬, 赵奕琳, 宁菁菁, 张育才, 王春霞. 儿童脓毒症预后相关长链非编码RNA筛选及竞争性内源RNA网络的构建[J]. 上海交通大学学报(医学版), 2025, 45(3): 282-291. |
| [7] | 刘美伶, 周亚兵, 王晓强. 儿童神经纤维瘤病1型颅内肿瘤性病变的治疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 399-406. |
| [8] | 姜允丽, 李爱求, 肖艳赏, 李田田, 胡亚晨, 张潇潇, 吴蓓蓉. 基于EMS管理模式的延续性护理在学龄前喘息性疾病儿童中的应用观察[J]. 上海交通大学学报(医学版), 2024, 44(2): 228-236. |
| [9] | 施泽纶, 王青, 何雯, 傅唯佳, 王颖雯, 韩晓, 张晓波. 纳米塑料诱导肺泡Ⅱ型上皮细胞DNA损伤加重重症哮喘[J]. 上海交通大学学报(医学版), 2024, 44(11): 1391-1405. |
| [10] | 赵艳红, 王传萍. 哮喘表型中CD4+ T细胞亚群的研究综述:分子机制和生物治疗选择[J]. 上海交通大学学报(医学版), 2023, 43(8): 1064-1070. |
| [11] | 王晓玉, 彭银辉, 马文琳, 姚博爽, 李一凡, 赵莉, 杨春霞. 新冠疫情大流行期间儿童及青少年新发焦虑症状的纵向研究[J]. 上海交通大学学报(医学版), 2023, 43(8): 963-970. |
| [12] | 温亚锦, 何雯, 韩晓, 张晓波. 不同严重程度支气管哮喘儿童肠道菌群差异的探索性分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 655-664. |
| [13] | 王颖雯, 李小玲, 代佳佳, 刘芳, 黄剑峰, 王立波, 张晓波, 冯瑞. 儿童重症支气管哮喘的流行病学特征及危险因素:一项单中心前瞻性队列研究[J]. 上海交通大学学报(医学版), 2023, 43(6): 665-672. |
| [14] | 李鹏云, 戴银芳, 陆燕红, 于兴梅, 徐丽娜, 第五建峰, 郝创利. 哮喘合并鼻炎儿童的呼出气一氧化氮的临床研究[J]. 上海交通大学学报(医学版), 2023, 43(6): 673-679. |
| [15] | 党向阳, 唐雨一, 李卫国, 刘恩梅. 呼出气一氧化氮检测对儿童咳嗽变异性哮喘诊断价值的系统评价和meta分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 680-688. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
