1 |
MARON B J, MARON M S. Hypertrophic cardiomyopathy[J]. Lancet, 2013, 381(9862): 242-255.
|
2 |
WANG J, BRAVO L, ZHANG J Q, et al. Radiomics analysis derived from LGE-MRI predict sudden cardiac death in participants with hypertrophic cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 766287.
|
3 |
GEORGIOPOULOS G, FIGLIOZZI S, PATERAS K, et al. Comparison of demographic, clinical, biochemical, and imaging findings in hypertrophic cardiomyopathy prognosis: a network meta-analysis[J]. JACC Heart Fail, 2023, 11(1): 30-41.
|
4 |
LOCKIE T, ISHIDA M, PERERA D, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve[J]. J Am Coll Cardiol, 2011, 57(1): 70-75.
|
5 |
CHIRIBIRI A, HAUTVAST G L T F, LOCKIE T, et al. Assessment of coronary artery stenosis severity and location[J]. JACC Cardiovasc Imaging, 2013, 6(5): 600-609.
|
6 |
NEISIUS U, MYERSON L, FAHMY A S, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J]. PLoS One, 2019, 14(8): e0221061.
|
7 |
NEISIUS U, EL-REWAIDY H, NAKAMORI S, et al. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1946-1954.
|
8 |
LIU J, ZHAO S H, YU S Q, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306.
|
9 |
GERMAIN P, VARDAZARYAN A, PADOY N, et al. Classification of cardiomyopathies from MR cine images using convolutional neural network with transfer learning[J]. Diagnostics (Basel), 2021, 11(9): 1554.
|
10 |
JIANG S, ZHANG L L, WANG J, et al. Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics[J]. Front Cardiovasc Med, 2022, 9: 1001269.
|
11 |
CHENG S N, FANG M J, CUI C, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results[J]. Eur Radiol, 2018, 28(11): 4615-4624.
|
12 |
AVARD E, SHIRI I, HAJIANFAR G, et al. Non-contrast cine cardiac magnetic resonance image radiomics features and machine learning algorithms for myocardial infarction detection[J]. Comput Biol Med, 2022, 141: 105145.
|
13 |
SHI R Y, WU R, AN D A L, et al. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls[J]. Clin Radiol, 2021, 76(3): 236.e9-236.e19.
|
14 |
ANTONOPOULOS A S, BOUTSIKOU M, SIMANTIRIS S, et al. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes[J]. Sci Rep, 2021, 11(1): 23596.
|
15 |
FAHMY A S, ROWIN E J, ARAFATI A, et al. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy[J]. J Cardiovasc Magn Reson, 2022, 24(1): 40.
|
16 |
ZHOU D, XU J, ZHAO S H, et al. CMR publications from China of the last more than 30 years[J]. Int J Cardiovasc Imaging, 2020, 36(9): 1737-1747.
|
17 |
LIU Q M, LU Q F, CHAI Y Z, et al. Papillary-muscle-derived radiomic features for hypertrophic cardiomyopathy versus hypertensive heart disease classification[J]. Diagnostics (Basel), 2023, 13(9): 1544.
|
18 |
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107.
|
19 |
BIAU G. Analysis of a random forests model[EB/OL]. arXiv: 1005.0208v3(2012-05-26)[2023-03-20]. https://doi.org/10.48550/arXiv.1005.0208.
|
20 |
CORTES C, VAPNIK V. Support-vector networks[J]. Mach Lang, 1995, 20(3): 273-297.
|
21 |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[EB/OL]. arXiv: 1201.0490v4(2018-07-05)[2023-03-20]. https://arxiv.org/abs/1201.0490.
|
22 |
YU F, HUANG H B, YU Q H, et al. Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy[J]. Ann Transl Med, 2021, 9(2): 108.
|
23 |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
|
24 |
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
25 |
RAISI-ESTABRAGH Z, IZQUIERDO C, CAMPELLO V M, et al. Cardiac magnetic resonance radiomics: basic principles and clinical perspectives[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 349-356.
|
26 |
YING X. An overview of overfitting and its solutions[J]. J Phys: Conf Ser, 2019, 1168: 022022.
|