1 |
GUNTER M J, ALHOMOUD S, ARNOLD M, et al. Meeting report from the joint IARC-NCI international cancer seminar series: a focus on colorectal cancer[J]. Ann Oncol, 2019, 30(4): 510-519.
|
2 |
中华人民共和国国家卫生健康委员会, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2023年版)[J]. 中华外科杂志, 2023, 61(8):617-644.
|
|
National Health Commission of the People's Republic of China, Chinese Society of Oncology. Chinese protocol of diagnosis and treatment of colorectal cancer (2023 edition)[J]. Chinese Journal of Surgery, 2023, 61(8): 617-644.
|
3 |
GUPTA S, LIEBERMAN D, ANDERSON J C, et al. Recom-mendations for follow-up after colonoscopy and polypectomy: a consensus update by the US multi-society task force on colorectal cancer[J]. Gastrointest Endosc, 2020, 91(3): 463-485.e5.
|
4 |
LIEBERMAN D A, REX D K, WINAWER S J, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer[J]. Gastroenterology, 2012, 143(3): 844-857.
|
5 |
BRETTHAUER M, KALAGER M, ADAMI H O. Do's and don'ts in evaluation of endoscopic screening for gastrointestinal cancers[J]. Endoscopy, 2016, 48(1): 75-80.
|
6 |
MORI Y, KUDO S E, BERZIN T M, et al. Computer-aided diagnosis for colonoscopy[J]. Endoscopy, 2017, 49(8): 813-819.
|
7 |
LEUFKENS A M, VAN OIJEN M G, VLEGGAAR F P, et al. Factors influencing the miss rate of polyps in a back-to-back colonoscopy study[J]. Endoscopy, 2012, 44(5): 470-475.
|
8 |
KIM N H, JUNG Y S, JEONG W S, et al. Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies[J]. Intest Res, 2017, 15(3): 411-418.
|
9 |
RUTTER M D, BEINTARIS I, VALORI R, et al. World endoscopy organization consensus statements on post-colonoscopy and post-imaging colorectal cancer[J]. Gastroenterology, 2018, 155(3): 909-925.e3.
|
10 |
GONG E J, BANG C S, LEE J J, et al. No-code platform-based deep-learning models for prediction of colorectal polyp histology from white-light endoscopy images: development and performance verification[J]. J Pers Med, 2022, 12(6): 963.
|
11 |
GARCÍA-RODRÍGUEZ A, TUDELA Y, CÓRDOVA H, et al. In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy[J]. Endosc Int Open, 2022, 10(9): E1201-E1207.
|
12 |
WANG P, LIU P, GLISSEN BROWN J R, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study[J]. Gastroenterology, 2020, 159(4): 1252-1261.e5.
|
13 |
HASSAN C, EAST J, RADAELLI F, et al. Bowel preparation for colonoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline-Update 2019[J]. Endoscopy, 2019, 51(8): 775-794.
|
14 |
RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. Int J Comput Vis, 2008, 77(1): 157-173.
|
15 |
URBAN G, TRIPATHI P, ALKAYALI T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy[J]. Gastroenterology, 2018, 155(4): 1069-1078.e8.
|
16 |
CHEUNG T H, YEUNG D Y. A survey of automated data augmentation for image classification: learning to compose, mix, and generate[J]. IEEE Trans Neural Netw Learn Syst, 2023. DOI: 10. 1109/TNNLS.2023.3282258.
|
17 |
SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
|
18 |
LESLIE A, CAREY F A, PRATT N R, et al. The colorectal adenoma-carcinoma sequence[J]. Br J Surg, 2002, 89(7): 845-860.
|
19 |
ZHOU Y J, LU X F, CHEN H, et al. Single-cell transcriptomics reveals early molecular and immune alterations underlying the serrated neoplasia pathway toward colorectal cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(2): 393-424.
|
20 |
GOTO H, ODA Y, MURAKAMI Y, et al. Proportion of de novo cancers among colorectal cancers in Japan[J]. Gastroenterology, 2006, 131(1): 40-46.
|
21 |
KIM K M, LEE E J, HA S, et al. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea[J]. Am J Surg Pathol, 2011, 35(9): 1274-1286.
|
22 |
LUI R N, SUNG J J Y. Sessile serrated adenoma/polyps: why we should be working flat out to understand more about these flat lesions?[J]. J Gastroenterol Hepatol, 2019, 34(10): 1667-1668.
|
23 |
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188.
|
24 |
JHA D, SMEDSRUD P, RIEGLER M, et al. ResUNet++: an advanced architecture for medical image segmentation[R]. San Diego: IEEE International Symposium on Multimedia, 2019.
|
25 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 834-848.
|
26 |
HSU C M, HSU C C, HSU Z M, et al. Colorectal polyp image detection and classification through grayscale images and deep learning[J]. Sensors (Basel), 2021, 21(18): 5995.
|
27 |
LO C M, YEH Y H, TANG J H, et al. Rapid polyp classification in colonoscopy using textural and convolutional features[J]. Healthcare (Basel), 2022, 10(8): 1494.
|
28 |
KRENZER A, HEIL S, FITTING D, et al. Automated classification of polyps using deep learning architectures and few-shot learning[J]. BMC Med Imaging, 2023, 23(1): 59.
|
29 |
LIU Z, LV Q, YANG Z, et al. Recent progress in transformer-based medical image analysis[J]. Comput Biol Med, 2023, 164: 107268.
|
30 |
ZHANG W, PANG J, CHEN K, et al. K-Net: towards unified image segmentation [R]. Montreal: Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021.
|