
上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (6): 773-778.doi: 10.3969/j.issn.1674-8115.2024.06.013
收稿日期:2024-01-19
接受日期:2024-03-06
出版日期:2024-06-28
发布日期:2024-06-28
通讯作者:
姜 萌,电子信箱:jiangmeng0919@163.com。作者简介:李昕欣(2002—),女,本科生;电子信箱:520710910006@shsmu.edu.cn基金资助:
LI Xinxin(
), BIAN Yize(
), ZHAO Hang, JIANG Meng(
)
Received:2024-01-19
Accepted:2024-03-06
Online:2024-06-28
Published:2024-06-28
Contact:
JIANG Meng, E-mail: jiangmeng0919@163.com.Supported by:摘要:
心肌应变是反映应力作用下整体或局部心肌形变程度的无量纲参数,可以量化检测心肌损伤,指导心脏疾病的早期诊断、干预与预后评估。心脏超声、心脏CT、心脏磁共振均可被用来进行应变成像与分析,其中二维斑点追踪超声心动图是当下应用最为广泛的心肌应变检测手段。但由于人工分析心肌应变存在观察者间差异且所使用的成像系统和分析软件各有不同,测得的应变值在不同供应商中一致性和可重复性欠佳,限制了心肌应变参数的临床应用。而人工智能可以通过自动应变计算和图像质量评估等方式在一定程度上克服应变测量的缺陷,具备广阔的发展前景。该文重点介绍人工智能在超声、磁共振等影像学手段中辅助测量心肌应变的研究进展,及其在疾病诊断与患者预后评估中的应用,希望助力于提高应变测量的效率和一致性,推动心肌应变常规应用于临床,在心肌损伤及心功能评估中发挥增量作用。然而,目前大部分研究涉及的样本量较小,并且缺乏外部验证,其结果的可靠性还需进一步证实。
中图分类号:
李昕欣, 边懿泽, 赵航, 姜萌. 人工智能辅助测量心肌应变的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(6): 773-778.
LI Xinxin, BIAN Yize, ZHAO Hang, JIANG Meng. Research progress in the artificial intelligence-assisted measurement of myocardial strain[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 773-778.
| 1 | PURWOWIYOTO S L, HALOMOAN R. Highlighting the role of global longitudinal strain assessment in valvular heart disease[J]. Egypt Heart J, 2022, 74(1): 46. |
| 2 | THAVENDIRANATHAN P, POULIN F, LIM K D, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review[J]. J Am Coll Cardiol, 2014, 63(25 Pt A): 2751-2768. |
| 3 | FARSALINOS K E, DARABAN A M, ÜNLÜ S, et al. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study[J]. J Am Soc Echocardiogr, 2015, 28(10): 1171-1181, e2. |
| 4 | NEGISHI K, LUCAS S, NEGISHI T, et al. What is the primary source of discordance in strain measurement between vendors: imaging or analysis?[J]. Ultrasound Med Biol, 2013, 39(4): 714-720. |
| 5 | GHADIMI S, AUGER D A, FENG X, et al. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping[J]. J Cardiovasc Magn Reson, 2021, 23(1): 20. |
| 6 | SALTE I M, ØSTVIK A, SMISTAD E, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(10): 1918-1928. |
| 7 | MIRSKY I, PARMLEY W W. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart[J]. Circ Res, 1973, 33(2): 233-243. |
| 8 | SENGUPTA P P, NARULA J. Cardiac strain as a universal biomarker: interpreting the sounds of uneasy heart muscle cells[J]. JACC Cardiovasc Imaging, 2014, 7(5): 534-536. |
| 9 | ERNANDE L, THIBAULT H, BERGEROT C, et al. Systolic myocardial dysfunction in patients with type 2 diabetes mellitus: identification at MR imaging with cine displacement encoding with stimulated echoes[J]. Radiology, 2012, 265(2): 402-409. |
| 10 | NIU J Q, ZENG M, WANG Y, et al. Sensitive marker for evaluation of hypertensive heart disease: extracellular volume and myocardial strain[J]. BMC Cardiovasc Disord, 2020, 20(1): 292. |
| 11 | AARSAETHER E, RÖSNER A, STRAUMBOTN E, et al. Peak longitudinal strain most accurately reflects myocardial segmental viability following acute myocardial infarction: an experimental study in open-chest pigs[J]. Cardiovasc Ultrasound, 2012, 10: 23. |
| 12 | MANGION K, MCCOMB C, AUGER D A, et al. Magnetic resonance imaging of myocardial strain after acute ST-segment-elevation myocardial infarction: a systematic review[J]. Circ Cardiovasc Imaging, 2017, 10(8): e006498. |
| 13 | HELM R H, BYRNE M, HELM P A, et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization[J]. Circulation, 2007, 115(8): 953-961. |
| 14 | LIM P, BUAKHAMSRI A, POPOVIC Z B, et al. Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy[J]. Circulation, 2008, 118(11): 1130-1137. |
| 15 | DENG L. Artificial intelligence in the rising wave of deep learning: the historical path and future outlook[perspectives][J]. IEEE Signal Process Mag, 2018, 35(1): 180,173-177. |
| 16 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
| 17 | RONG G G, MENDEZ A, BOU ASSI E, et al. Artificial intelligence in healthcare: review and prediction case studies[J]. Engineering, 2020, 6(3): 291-301. |
| 18 | HSIAO H C W, CHEN S H F, TSAI J J P. Deep learning for risk analysis of specific cardiovascular diseases using environmental data and outpatient records[C/OL]//2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, China. IEEE, 2016: 369-372[2023-12-19].https://ieeexplore.ieee.org/document/7790013. |
| 19 | UPTON R, MUMITH A, BEQIRI A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J]. JACC Cardiovasc Imaging, 2022, 15(5): 715-727. |
| 20 | COTELLA J I, SLIVNICK J A, SANDERSON E, et al. Artificial intelligence based left ventricular ejection fraction and global longitudinal strain in cardiac amyloidosis[J]. Echocardiography, 2023, 40(3): 188-195. |
| 21 | BACKHAUS S J, ALDEHAYAT H, KOWALLICK J T, et al. Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction[J]. Sci Rep, 2022, 12(1): 12220. |
| 22 | HEIMDAL A, STØYLEN A, TORP H, et al. Real-time strain rate imaging of the left ventricle by ultrasound[J]. J Am Soc Echocardiogr, 1998, 11(11): 1013-1019. |
| 23 | PIRAT B, KHOURY D S, HARTLEY C J, et al. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion[J]. J Am Coll Cardiol, 2008, 51(6): 651-659. |
| 24 | MOR-AVI V, LANG R M, BADANO L P, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography[J]. Eur J Echocardiogr, 2011, 12(3): 167-205. |
| 25 | PÉREZ DE ISLA L, BALCONES D V, FERNÁNDEZ-GOLFÍN C, et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking[J]. J Am Soc Echocardiogr, 2009, 22(4): 325-330. |
| 26 | KAWAKAMI H, WRIGHT L, NOLAN M, et al. Feasibility, reproducibility, and clinical implications of the novel fully automated assessment for global longitudinal strain[J]. J Am Soc Echocardiogr, 2021, 34(2): 136-145.e2. |
| 27 | EVAIN E, SUN Y Y, FARAZ K, et al. Motion estimation by deep learning in 2D echocardiography: synthetic dataset and validation[J]. IEEE Trans Med Imaging, 2022, 41(8): 1911-1924. |
| 28 | LIU S, BOSE, AHMED A, et al. Artificial intelligence-based assessment of indices of right ventricular function[J]. J Cardiothorac Vasc Anesth, 2020, 34(10): 2698-2702. |
| 29 | HUANG K C, HUANG C S, SU M Y, et al. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements[J]. JACC Cardiovasc Imaging, 2021, 14(2): 335-345. |
| 30 | SCATTEIA A, BARITUSSIO A, BUCCIARELLI-DUCCI C. Strain imaging using cardiac magnetic resonance[J]. Heart Fail Rev, 2017, 22(4): 465-476. |
| 31 | AXEL L, MONTILLO A, KIM D. Tagged magnetic resonance imaging of the heart: a survey[J]. Med Image Anal, 2005, 9(4): 376-393. |
| 32 | ZERHOUNI E A, PARISH D M, ROGERS W J, et al. Human heart: tagging with MR imaging‒ a method for noninvasive assessment of myocardial motion[J]. Radiology, 1988, 169(1): 59-63. |
| 33 | CLAUS P, OMAR A M S, PEDRIZZETTI G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. |
| 34 | GRÖSCHEL J, KUHNT J, VIEZZER D, et al. Comparison of manual and artificial intelligence based quantification of myocardial strain by feature tracking: a cardiovascular MR study in health and disease[J]. Eur Radiol, 2024, 34(2): 1003-1015. |
| 35 | CHENG N N, BONAZZOLA R, RAVIKUMAR N, et al. A generative framework for predicting myocardial strain from cine-cardiac magnetic resonance imaging[C]//Annual Conference on Medical Image Understanding and Analysis. Cham: Springer, 2022: 482-493. |
| 36 | MISKINYTE E, BUCIUS P, ERLEY J, et al. Assessment of global longitudinal and circumferential strain using computed tomography feature tracking: intra-individual comparison with CMR feature tracking and myocardial tagging in patients with severe aortic stenosis[J]. J Clin Med, 2019, 8(9): 1423. |
| 37 | WONG K C, TEE M, CHEN M, et al. Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach[J]. Int J Comput Assist Radiol Surg, 2016, 11(9): 1573-1583. |
| 38 | KOEHLER S, KUHM J, HUFFAKER T, et al. Artificial intelligence to derive aligned strain in cine CMR to detect patients with myocardial fibrosis: an open and scrutinizable approach[J]. Res Sq, 2024.DOI: 10.21203/rs.3.rs-3785677/v1. |
| 39 | KARAGODIN I, CARVALHO SINGULANE C, WOODWARD G M, et al. Echocardiographic correlates of in-hospital death in patients with acute COVID-19 infection: the world alliance societies of echocardiography (WASE-COVID) study[J]. J Am Soc Echocardiogr, 2021, 34(8): 819-830. |
| 40 | O'DRISCOLL J M, HAWKES W, BEQIRI A, et al. Left ventricular assessment with artificial intelligence increases the diagnostic accuracy of stress echocardiography[J]. Eur Heart J Open, 2022, 2(5): oeac059. |
| 41 | AKERMAN A, BERNARD L, DESCHAMPS T, et al. Automated contouring of non-contrast echocardiograms result in similar estimates of left ventricular function to manually contoured contrast-enhanced images in chemotherapy patients[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(Suppl 1): jeab289.013. |
| 42 | OUYANG D, HE B, GHORBANI A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256. |
| 43 | NARULA S, SHAMEER K, SALEM OMAR A M, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295. |
| 44 | World Health Organization. Ethics and governance of artificial intelligence for health[M]. Geneva: World Health Organization, 2021. |
| 45 | 隗冰芮, 薛鹏, 江宇, 等. 世界卫生组织《医疗卫生中人工智能的伦理治理》指南及对中国的启示[J]. 中华医学杂志, 2022, 102(12): 833-837. |
| KUI B R, XUE P, JIANG Y, et al. World Health Organization guidance Ethical and Governance of Artificial Intelligence for Health and implications for China[J]. National Medical Journal of China, 2022, 102(12): 833-837. |
| [1] | 胥瀚文, 陈墨馨, 梁小乙, 舒琴, 聂琬钦, 杨雪峰, 沈慜瑄, 黎晓静, 曹禹, 李琳. 基于面部照片的眼病智能诊断研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1249-1255. |
| [2] | 梁书源, 叶宝英, 程蔚蔚. 超声指标和血液指标预测胎儿生长受限的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(8): 1059-1065. |
| [3] | 李遥敏, 徐建国, 于霞. 热射病致Brugada拟表型1例[J]. 上海交通大学学报(医学版), 2025, 45(4): 523-528. |
| [4] | 宋毅杰, 陈天真, 钟娜, 赵敏. 生成式人工智能在精神医学中的应用与挑战[J]. 上海交通大学学报(医学版), 2025, 45(10): 1271-1278. |
| [5] | 周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳. 基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究[J]. 上海交通大学学报(医学版), 2024, 44(5): 552-559. |
| [6] | 郭勇麟, 陈墨馨, 刘哲源, 李奕霏, 王子琦, 舒琴, 李琳. 基于人工智能技术的斜视诊疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 393-398. |
| [7] | 马奔, 赵成, 束翌俊, 董平. CT影像组学在胃肠道间质瘤中的应用进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 923-930. |
| [8] | 卫雪敏, 高成金. ASPECT评分在急性缺血性脑卒中临床应用中的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 919-924. |
| [9] | 王晓峰, 周璐, 姚乐宇, 何凡, 彭海霞, 杨大明, 黄晓霖. 深度卷积神经网络模型辅助下结直肠息肉检测系统对初级医师结直肠小息肉检出率的影响[J]. 上海交通大学学报(医学版), 2022, 42(2): 205-210. |
| [10] | 刘想, 谢辉辉, 许玉峰, 陶晓峰, 柳林, 吴迪嘉, 王霄英. 人工智能在胸部创伤肋骨骨折CT诊断中应用的初步研究[J]. 上海交通大学学报(医学版), 2021, 41(7): 920-925. |
| [11] | 李小敏, 曲扬, 张少霆, 赵亮, 刘畅, 谢帅宁, 戴尅戎, 艾松涛. 人工智能技术在骨肌系统影像学方面的应用[J]. 上海交通大学学报(医学版), 2021, 41(2): 262-266. |
| [12] | 李欢, 易培强, 苏筠, 陈培战, 许赬, 曹璐, 陈佳艺, 李敏. 垂体腺苷酸环化酶激活肽38对急性放射性心肌损伤的防护作用[J]. 上海交通大学学报(医学版), 2021, 41(2): 129-133. |
| [13] | 张 璐1,陈 强2,蒋蓓蓓1,丁珍红2,张 丽3,解学乾1. 基于生成式对抗网络的冠状动脉CT血管成像运动伪影去除的初步研究[J]. 上海交通大学学报(医学版), 2020, 40(9): 1229-1235. |
| [14] | 荣雯雯1,汪 刚1,朱其立2. 基于人工智能的病历后结构化专病数据库在临床研究中的价值探讨[J]. 上海交通大学学报(医学版), 2020, 40(7): 995-1000. |
| [15] | 陆言巧,沈 兰,何 奔. 人工智能在心血管疾病的辅助诊疗中的应用[J]. 上海交通大学学报(医学版), 2020, 40(2): 259-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||