1 |
KANG Q Z, YANG C X. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37: 101799.
|
2 |
KOLEVA-GEORGIEVA D N, SIVKOVA N P, TERZIEVA D. Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med, 2011, 53(2): 44-50.
|
3 |
SADIKAN M Z, NASIR N A A, AGARWAL R, et al. Protective effect of palm oil-derived tocotrienol-rich fraction against retinal neurodegenerative changes in rats with streptozotocin-induced diabetic retinopathy[J]. Biomolecules, 2020, 10(4): 556.
|
4 |
SADIKAN M Z, ABDUL NASIR N A, BAKAR N S, et al. Tocotrienol-rich fraction reduces retinal inflammation and angiogenesis in rats with streptozotocin-induced diabetes[J]. BMC Complement Med Ther, 2023, 23(1): 179.
|
5 |
BARBER A J, GARDNER T W, ABCOUWER S F. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1156-1163.
|
6 |
METTU P S, ALLINGHAM M J, COUSINS S W. Incomplete response to anti-VEGF therapy in neovascular AMD: exploring disease mechanisms and therapeutic opportunities[J]. Prog Retin Eye Res, 2021, 82: 100906.
|
7 |
EICHENBAUM D A, AHMED A, HIYA F. Ranibizumab port delivery system: a clinical perspective[J]. BMJ Open Ophthalmol, 2022, 7(1): e001104.
|
8 |
REGILLO C, BERGER B, BROOKS L, et al. Archway phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration 2-year results[J]. Ophthalmology, 2023, 130(7): 735-747.
|
9 |
SHUGHOURY A, BHATWADEKAR A, JUSUFBEGOVIC D, et al. The evolving therapeutic landscape of diabetic retinopathy[J]. Expert Opin Biol Ther, 2023, 23(10): 969-985.
|
10 |
BROWN D M, EMANUELLI A, BANDELLO F, et al. KESTREL and KITE: 52-week results from two phase Ⅲ pivotal trials of brolucizumab for diabetic macular edema[J]. Am J Ophthalmol, 2022, 238: 157-172.
|
11 |
ABU SERHAN H, TAHA M J J, ABUAWWAD M T, et al. Safety and efficacy of brolucizumab in the treatment of diabetic macular edema and diabetic retinopathy: a systematic review and meta-analysis[J]. Semin Ophthalmol, 2024, 39(4): 251-260.
|
12 |
JOUSSEN A M, RICCI F, PARIS L P, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data[J]. Eye, 2021, 35(5): 1305-1316.
|
13 |
SAHNI J, PATEL S S, DUGEL P U, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial[J]. Ophthalmology, 2019, 126(8): 1155-1170.
|
14 |
WYKOFF C C, ABREU F, ADAMIS A P, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials[J]. Lancet, 2022, 399(10326): 741-755.
|
15 |
DUGEL P U, BOYER D S, ANTOSZYK A N, et al. Phase 1 study of OPT-302 inhibition of vascular endothelial growth factors C and D for neovascular age-related macular degeneration[J]. Ophthalmol Retina, 2020, 4(3): 250-263.
|
16 |
GONZALEZ-CORTES J H, MARTINEZ-PACHECO V A, GONZALEZ-CANTU J E, et al. Current treatments and innovations in diabetic retinopathy and diabetic macular edema[J]. Pharmaceutics, 2022, 15(1): 122.
|
17 |
HUSSAIN R M, SHAUKAT B A, CIULLA L M, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration[J]. Drug Des Devel Ther, 2021, 15: 2653-2665.
|
18 |
CHANDRASEKARAN P R, MADANAGOPALAN V G. KSI-301: antibody biopolymer conjugate in retinal disorders[J]. Ther Adv Ophthalmol, 2021, 13: 25158414211027708.
|
19 |
BOYER D S, YOON Y H, BELFORT R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914.
|
20 |
WEI W B, CHEN Y X, HU B J, et al. Multicenter, prospective, randomized study of dexamethasone intravitreal implant in patients with center-involved diabetic macular edema in the Asia-Pacific region[J]. Clin Ophthalmol, 2021, 15: 4097-4108.
|
21 |
MUSHTAQ Y, MUSHTAQ M M, GATZIOUFAS Z, et al. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for the treatment of retinal conditions. A review of clinical studies[J]. Drug Des Devel Ther, 2023, 17: 961-975.
|
22 |
SINGER M A, SHETH V, MANSOUR S E, et al. Three-year safety and efficacy of the 0.19-mg fluocinolone acetonide intravitreal implant for diabetic macular edema: the PALADIN study[J]. Ophthalmology, 2022, 129(6): 605-613.
|
23 |
GABR A F, KAMEL M F, ELBARAWY A A. Topical bromfenac as adjunctive treatment with intravitreal ranibizumab for diabetic macular edema[J]. Int Ophthalmol, 2023, 43(9): 3219-3226.
|
24 |
ELBENDARY A, ELKANNISHY A H. Intravitreal diclofenac versus intravitreal bevacizumab in persistent diabetic macular edema: anatomical and functional outcome[J]. Saudi J Ophthalmol, 2018, 32(4): 303-309.
|
25 |
FEIZI S, ALEMZADEH-ANSARI M, KARIMIAN F, et al. Use of erythropoietin in ophthalmology: a review[J]. Surv Ophthalmol, 2022, 67(2): 427-439.
|
26 |
SAMSON F P, HE W L, SRIPATHI S R, et al. Dual switch mechanism of erythropoietin as an antiapoptotic and pro-angiogenic determinant in the retina[J]. ACS Omega, 2020, 5(33): 21113-21126.
|
27 |
QI Y X, SU X J, WEI L L, et al. Erythropoietin inhibits apoptosis of retinal ganglion cells induced by high glucose through JNK signaling pathway[J]. J Biol Regul Homeost Agents, 2021, 35(2): 547-557.
|
28 |
ENTEZARI M, FLAVARJANI Z K, RAMEZANI A, et al. Combination of intravitreal bevacizumab and erythropoietin versus intravitreal bevacizumab alone for refractory diabetic macular edema: a randomized double-blind clinical trial[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(11): 2375-2380.
|
29 |
REID G, LOIS N. Erythropoietin in diabetic retinopathy[J]. Vision Res, 2017, 139: 237-242.
|
30 |
CANNING P, O′LEARY O, ALLEN L D, et al. ARA290 (cibinetide) treatment confers neuroprotective effects in diabetic retinopathy, through modulation of inflammatory mediators[J]. Invest Ophthalmol Vis Sci, 2019, 60(9): 2720.
|
31 |
LOIS N, GARDNER E, MCFARLAND M, et al. A phase 2 clinical trial on the use of cibinetide for the treatment of diabetic macular edema[J]. J Clin Med, 2020, 9(7): 2225.
|
32 |
AMATO R, DAL MONTE M, CERVIA D, et al. Neural degeneration mechanisms in diabetic retinopathy: the role of apoptosis and autophagy[J]. Acta Ophthalmol, 2017, 95(S259). DOI: 10.1111/j.1755-3768.2017.0F064.
|
33 |
VILLARROEL M, CIUDIN A, HERNÁNDEZ C, et al. Neurodegeneration: an early event of diabetic retinopathy[J]. World J Diabetes, 2010, 1(2): 57-64.
|
34 |
HERNÁNDEZ C, SIMÓ R. Somatostatin replacement: a new strategy for treating diabetic retinopathy[J]. Curr Med Chem, 2013, 20(26): 3251-3257.
|
35 |
MAZZEO A, ARROBA A I, BELTRAMO E, et al. Somatostatin protects human retinal pericytes from inflammation mediated by microglia[J]. Exp Eye Res, 2017, 164: 46-54.
|
36 |
SIMÓ R, HERNÁNDEZ C, PORTA M, et al. Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial[J]. Diabetes, 2019, 68(2): 457-463.
|
37 |
JULIUS A, HOPPER W. A non-invasive, multi-target approach to treat diabetic retinopathy[J]. Biomed Pharmacother, 2019, 109: 708-715.
|
38 |
SENTHILKUMARI S, SHARMILA R, CHIDAMBARANATHAN G, et al. Epalrestat, an aldose reductase inhibitor prevents glucose-induced toxicity in human retinal pigment epithelial cells in vitro[J]. J Ocul Pharmacol Ther, 2017, 33(1): 34-41.
|
39 |
TOYODA F, TANAKA Y, OTA A, et al. Effect of ranirestat, a new aldose reductase inhibitor, on diabetic retinopathy in SDT rats[J]. J Diabetes Res, 2014, 2014: 672590.
|
40 |
LU Z W, FAN B, LI Y Z, et al. RAGE plays key role in diabetic retinopathy: a review[J]. Biomed Eng Online, 2023, 22(1): 128.
|
41 |
RAMIS R, ORTEGA-CASTRO J, CABALLERO C, et al. How does pyridoxamine inhibit the formation of advanced glycation end products? The role of its primary antioxidant activity[J]. Antioxidants, 2019, 8(9): 344.
|
42 |
XU J, CHEN L J, YU J, et al. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy[J]. Cell Physiol Biochem, 2018, 48(2): 705-717.
|
43 |
VAN DEN EYNDE M D G, HOUBEN A J H M, SCHEIJEN J L J M, et al. Pyridoxamine reduces methylglyoxal and markers of glycation and endothelial dysfunction, but does not improve insulin sensitivity or vascular function in abdominally obese individuals: a randomized double-blind placebo-controlled trial[J]. Diabetes Obes Metab, 2023, 25(5): 1280-1291.
|
44 |
BAGGE S L, FOTHERINGHAM A K, LEUNG S S, et al. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes[J]. Med Res Rev, 2020, 40(4): 1200-1219.
|
45 |
DEISSLER H L, LANG G E. The protein kinase C inhibitor: ruboxistaurin[J]. Dev Ophthalmol, 2016, 55: 295-301.
|
46 |
LAM C, LOW J Y, TRAN P T, et al. The hexosamine biosynthetic pathway and cancer: current knowledge and future therapeutic strategies[J]. Cancer Lett, 2021, 503: 11-18.
|
47 |
SEMBA R D, HUANG H, LUTTY G A, et al. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy[J]. Proteomics Clin Appl, 2014, 8(3/4): 218-231.
|
48 |
VAIDYANATHAN K, WELLS L. Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type Ⅱ diabetes[J]. J Biol Chem, 2014, 289(50): 34466-34471.
|
49 |
GUREL Z, SHEIBANI N. O-Linked β-N-acetylglucosamine (O- GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy[J]. Clin Sci, 2018, 132(2): 185-198.
|
50 |
WANG Y X, ESHWARAN R, BECK S C, et al. Contribution of the hexosamine biosynthetic pathway in the hyperglycemia-dependent and -independent breakdown of the retinal neurovascular unit[J]. Mol Metab, 2023, 73: 101736.
|
51 |
DIERSCHKE S K, TORO A L, BARBER A J, et al. Angiotensin-(1‒7) attenuates protein O-GlcNAcylation in the retina by EPAC/Rap1-dependent inhibition of O-GlcNAc transferase[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 24.
|
52 |
PETERSON S B, HART G W. New insights: a role for O-GlcNAcylation in diabetic complications[J]. Crit Rev Biochem Mol Biol, 2016, 51(3): 150-161.
|
53 |
SILVA K C, ROSALES M A, HAMASSAKI D E, et al. Green tea is neuroprotective in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1325-1336.
|
54 |
ABU-AMERO K K, KONDKAR A A, CHALAM K V. Resveratrol and ophthalmic diseases[J]. Nutrients, 2016, 8(4): 200.
|
55 |
CHEN Y H, MENG J, LI H, et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1[J]. Exp Eye Res, 2019, 181: 356-366.
|
56 |
LANDON R, GUEGUEN V, PETITE H, et al. Impact of astaxanthin on diabetes pathogenesis and chronic complications[J]. Mar Drugs, 2020, 18(7): 357.
|
57 |
GELFMAN C M, GRISHANIN R, BENDER K O, et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema[J]. J Ocul Pharmacol Ther, 2021, 37(3): 181-190.
|