1 |
CHOOI Y C, DING C, MAGKOS F. The epidemiology of obesity[J]. Metabolism, 2019, 92: 6-10.
|
2 |
KOLIAKI C, DALAMAGA M, LIATIS S. Update on the obesity epidemic: after the sudden rise, is the upward trajectory beginning to flatten?[J]. Curr Obes Rep, 2023, 12(4): 514-527.
|
3 |
CHEN K, SHEN Z W, GU W J, et al. Prevalence of obesity and associated complications in China: a cross-sectional, real-world study in 15.8 million adults[J]. Diabetes Obes Metab, 2023, 25(11): 3390-3399.
|
4 |
CONGDON P, AMUGSI D. Editorial: the obesity epidemic: causes, context, prevention[J]. Front Public Health, 2022, 10: 1030180.
|
5 |
ROH E, CHOI K M. Hormonal gut-brain signaling for the treatment of obesity[J]. Int J Mol Sci, 2023, 24(4): 3384.
|
6 |
TARRAGON E, MORENO J J. Role of endocannabinoids on sweet taste perception, food preference, and obesity-related disorders[J]. Chem Senses, 2017, 43(1): 3-16.
|
7 |
OUSTRIC P, THIVEL D, DALTON M, et al. Measuring food preference and reward: application and cross-cultural adaptation of the Leeds Food Preference Questionnaire in human experimental research[J]. Food Qual Prefer, 2020, 80: 103824.
|
8 |
DE BRUIJN S E M, DE VRIES Y C, DE GRAAF C, et al. The reliability and validity of the Macronutrient and Taste Preference Ranking Task: a new method to measure food preferences[J]. Food Qual Prefer, 2017, 57: 32-40.
|
9 |
EDWIN THANARAJAH S, DIFELICEANTONIO A G, ALBUS K, et al. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans[J]. Cell Metab, 2023, 35(4): 571-584.e6.
|
10 |
VAN GALEN K A, SCHRANTEE A, TER HORST K W, et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study[J]. Nat Metab, 2023, 5(6): 1059-1072.
|
11 |
LI M T, TAN H E, LU Z Y, et al. Gut-brain circuits for fat preference[J]. Nature, 2022, 610(7933): 722-730.
|
12 |
TAN H E, SISTI A C, JIN H, et al. The gut-brain axis mediates sugar preference[J]. Nature, 2020, 580(7804): 511-516.
|
13 |
ELIAN V, POPOVICI V, KARAMPELAS O, et al. Risks and benefits of SGLT-2 inhibitors for type 1 diabetes patients using automated insulin delivery systems: a literature review[J]. Int J Mol Sci, 2024, 25(4): 1972.
|
14 |
KAELBERER M M, BUCHANAN K L, KLEIN M E, et al. A gut-brain neural circuit for nutrient sensory transduction[J]. Science, 2018, 361(6408): eaat5236.
|
15 |
JAIME-LARA R B, BROOKS B E, VIZIOLI C, et al. A systematic review of the biological mediators of fat taste and smell[J]. Physiol Rev, 2023, 103(1): 855-918.
|
16 |
SPANIER B, ROHM F. Proton coupled oligopeptide transporter 1 (PepT1) function, regulation, and influence on the intestinal homeostasis[J]. Compr Physiol, 2018, 8(2): 843-869.
|
17 |
QIAN L, LI N, LU X C, et al. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression[J]. Nat Metab, 2023, 5(7): 1159-1173.
|
18 |
BERTHOUD H R, MORRISON C D, ACKROFF K, et al. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases[J]. Int J Obes (Lond), 2021, 45(10): 2156-2168.
|
19 |
LIU W W, BOHÓRQUEZ D V. The neural basis of sugar preference[J]. Nat Rev Neurosci, 2022, 23(10): 584-595.
|
20 |
KHAN M S, SPANN R A, MÜNZBERG H, et al. Protein appetite at the interface between nutrient sensing and physiological homeostasis[J]. Nutrients, 2021, 13(11): 4103.
|
21 |
MÜNZBERG H, BERTHOUD H R, NEUHUBER W L. Sensory spinal interoceptive pathways and energy balance regulation[J]. Mol Metab, 2023, 78: 101817.
|
22 |
HUANG K P, GOODSON M L, VANG W, et al. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet[J]. Int J Obes (Lond), 2021, 45(2): 348-357.
|
23 |
WOODS C A, GUTTMAN Z R, HUANG D, et al. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal[J]. Physiol Behav, 2016, 159: 52-63.
|
24 |
GUZMÁN A, HERNÁNDEZ-CORONADO C G, ROSALES-TORRES A M, et al. Leptin regulates neuropeptides associated with food intake and GnRH secretion[J]. Ann Endocrinol, 2019, 80(1): 38-46.
|
25 |
JENSEN-CODY S O, FLIPPO K H, CLAFLIN K E, et al. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake[J]. Cell Metab, 2020, 32(2): 273-286.e6.
|
26 |
HILL C M, LAEGER T, DEHNER M, et al. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism[J]. Cell Rep, 2019, 27(10): 2934-2947.e3.
|
27 |
FLIPPO K H, JENSEN-CODY S O, CLAFLIN K E, et al. FGF21 signaling in glutamatergic neurons is required for weight loss associated with dietary protein dilution[J]. Sci Rep, 2020, 10(1): 19521.
|
28 |
YU K B, HSIAO E Y. Roles for the gut microbiota in regulating neuronal feeding circuits[J]. J Clin Invest, 2021, 131(10): e143772.
|
29 |
TREVELLINE B K, KOHL K D. The gut microbiome influences host diet selection behavior[J]. Proc Natl Acad Sci USA, 2022, 119(17): e2117537119.
|
30 |
YAO Z P, SCOTT K. Serotonergic neurons translate taste detection into internal nutrient regulation[J]. Neuron, 2022, 110(6): 1036-1050.e7.
|
31 |
DE WOUTERS D′OPLINTER A, RASTELLI M, VAN HUL M, et al. Gut microbes participate in food preference alterations during obesity[J]. Gut Microbes, 2021, 13(1): 1959242.
|
32 |
FAN S J, GUO W W, XIAO D, et al. Microbiota-gut-brain axis drives overeating disorders[J]. Cell Metab, 2023, 35(11): 2011-2027.e7.
|
33 |
WATTS A G, KANOSKI S E, SANCHEZ-WATTS G, et al. The physiological control of eating: signals, neurons, and networks[J]. Physiol Rev, 2022, 102(2): 689-813.
|
34 |
TELLEZ L A, HAN W F, ZHANG X B, et al. Separate circuitries encode the hedonic and nutritional values of sugar[J]. Nat Neurosci, 2016, 19(3): 465-470.
|
35 |
GEISLER C E, HAYES M R. Metabolic hormone action in the VTA: reward-directed behavior and mechanistic insights[J]. Physiol Behav, 2023, 268: 114236.
|
36 |
HAN W F, TELLEZ L A, PERKINS M H, et al. A neural circuit for gut-induced reward[J]. Cell, 2018, 175(3): 887-888.
|
37 |
FERNANDES A B, ALVES DA SILVA J, ALMEIDA J, et al. Postingestive modulation of food seeking depends on vagus-mediated dopamine neuron activity[J]. Neuron, 2020, 106(5): 778-788.e6.
|
38 |
BERRIOS J, LI C A, MADARA J C, et al. Food cue regulation of AGRP hunger neurons guides learning[J]. Nature, 2021, 595(7869): 695-700.
|
39 |
SAYAR-ATASOY N, YAVUZ Y, LAULE C, et al. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons[J]. Cell Rep, 2024, 43(1): 113630.
|
40 |
NYEMA N T, MCKNIGHT A D, VARGAS-ELVIRA A G, et al. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference[J]. Mol Metab, 2023, 78: 101833.
|
41 |
LIU H L, HE Y, BAI J L, et al. Hypothalamic Grb10 enhances leptin signalling and promotes weight loss[J]. Nat Metab, 2023, 5(1): 147-164.
|
42 |
BEAULIEU K, HOPKINS M, GIBBONS C, et al. Exercise training reduces reward for high-fat food in adults with overweight/obesity[J]. Med Sci Sports Exerc, 2020, 52(4): 900-908.
|
43 |
THACKRAY A E, HINTON E C, ALANAZI T M, et al. Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging[J]. Hum Brain Mapp, 2023, 44(9): 3815-3832.
|
44 |
ALABDULJABBAR K, AL-NAJIM W, LE ROUX C W. Food preferences after bariatric surgery: a review update[J]. Intern Emerg Med, 2023, 18(2): 351-358.
|
45 |
LI Y Q, PENG Y, SHEN Y B, et al. Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases[J]. Crit Rev Food Sci Nutr, 2023, 63(29): 9816-9842.
|
46 |
LI Y, QIN C, DONG L Z, et al. Whole grain benefit: synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice[J]. Food Funct, 2022, 13(24): 12686-12696.
|
47 |
WENINGER S N, HERMAN C, MEYER R K, et al. Oligofructose improves small intestinal lipid-sensing mechanisms via alterations to the small intestinal microbiota[J]. Microbiome, 2023, 11(1): 169.
|