
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (6): 784-791.doi: 10.3969/j.issn.1674-8115.2025.06.014
收稿日期:2025-02-17
接受日期:2025-04-03
出版日期:2025-06-28
发布日期:2025-06-28
通讯作者:
陈云丰,主任医师,博士;电子信箱:drchenyunfeng@sina.com。作者简介:梁效宁(2001—),男,本科生;电子信箱:liangxiaoning@sjtu.edu.cn。
基金资助:
LIANG Xiaoning, SHI Tingwang, CHEN Yunfeng(
)
Received:2025-02-17
Accepted:2025-04-03
Online:2025-06-28
Published:2025-06-28
Contact:
CHEN Yunfeng, E-mail: drchenyunfeng@sina.com.Supported by:摘要:
小菌落变异株(small colony variant,SCV)是金黄色葡萄球菌等细菌在环境选择性压力下产生的特殊表型变异体,具有生长缓慢、色素合成减少、营养缺陷、耐药性增强以及易于细胞内定植和形成生物膜等独特的生物学特性。近年来,研究人员逐渐发现SCV在感染的慢性化进程和不良预后中扮演着关键角色。SCV群体表现出显著的异质性,其分子特征复杂多样。与野生型菌株相比,SCV毒力低下,黏附性显著增强,可有效逃避免疫系统的识别和清除。SCV通过侵入巨噬细胞等细胞内并形成无症状的休眠体,引起机体对抗菌药物耐药,在周围环境改善时可恢复为野生型细菌,造成骨髓炎、囊性纤维化、内植物感染等迁延不愈。但目前SCV治疗仅限于长期抗生素治疗联合感染部位清创处理,关于SCV及其致病机制与治疗认识依然不明确。传统疗法如利福平联合万古霉素对胞内SCV疗效有限,新型策略比如靶向ATP合酶抑制剂(如番茄红素)或纳米载体递送抗生素以增强胞内渗透、碱化微环境或者物理疗法破坏生物膜等将成为攻克SCV相关感染的重要突破口。该文总结了SCV的生物学特征、致病机制与治疗研究进展,为SCV相关感染的研究和治疗提供参考。
中图分类号:
梁效宁, 石亭旺, 陈云丰. 小菌落变异株的致病机制及治疗研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 784-791.
LIANG Xiaoning, SHI Tingwang, CHEN Yunfeng. Pathogenic mechanisms and therapeutic advances of small colony variants[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 784-791.
| Colony and cellular morphology | SCV | NP |
|---|---|---|
| Colony appearance | Small, transparent, needle-like in shape and irregular | Round, smooth, with intact edges, convex and glossy |
| Pigmentation | Reduced or absent | Colorless or colored (varies by species) |
| Hemolytic rings | Diameter reduced or absent | S. aureus exhibits α- or β-hemolysis |
| Size after 24 h culture | Invisible or tiny (1/10 the size of wild-type strains) | Visible to the naked eye, 1‒3 mm or larger |
| Special structure | PA-SCVs: fewer flagella, increased pil and thicker capsule | Normal |
| Cell shape | Incomplete, branched and cross-linked | Round |
| Cell wall | Thickened | Relatively thin |
| Cytoplasm | Homogeneous | Heterogeneous (high peripheral particle density, low central density) |
表1 SCV与正常菌株的细胞及菌落形态比较
Tab 1 Comparison of cell and colony morphology between SCVs and normal strains
| Colony and cellular morphology | SCV | NP |
|---|---|---|
| Colony appearance | Small, transparent, needle-like in shape and irregular | Round, smooth, with intact edges, convex and glossy |
| Pigmentation | Reduced or absent | Colorless or colored (varies by species) |
| Hemolytic rings | Diameter reduced or absent | S. aureus exhibits α- or β-hemolysis |
| Size after 24 h culture | Invisible or tiny (1/10 the size of wild-type strains) | Visible to the naked eye, 1‒3 mm or larger |
| Special structure | PA-SCVs: fewer flagella, increased pil and thicker capsule | Normal |
| Cell shape | Incomplete, branched and cross-linked | Round |
| Cell wall | Thickened | Relatively thin |
| Cytoplasm | Homogeneous | Heterogeneous (high peripheral particle density, low central density) |
| Carrier type | Delivery vehicle | Loaded antibiotic | SCV infection model |
|---|---|---|---|
| Lipid Nanoparticles | Poly lactic-co-glycolic acid (PLGA) nanoparticles[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Mesoporous silica nanoparticles (MSNPs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Organically modified (ethylene-bridged) MSNPs (MONs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Nanogels | Dual-responsive nanogels[ | Gentamicin | Mouse peritonitis model |
| Nanogels | Gelatin-alginate composite nanogels[ | Enrofloxacin | Sau-SCV strain |
| Nanogels | Chitosan oligosaccharide-carboxymethyl cellulose composite nanogels[ | Tilmicosin | Sau-SCV strain |
| Nanogels | Composite nanogels[ | Florfenicol | Murine mastitis model |
| Nanogels | Chitosan composite nanogels[ | Glycyrrhizic acid | Sau-SCV strain |
表2 纳米颗粒靶向递送抗SCV抗生素的载体类型
Tab 2 Nanocarrier types for targeted delivery of antibiotics against SCVs
| Carrier type | Delivery vehicle | Loaded antibiotic | SCV infection model |
|---|---|---|---|
| Lipid Nanoparticles | Poly lactic-co-glycolic acid (PLGA) nanoparticles[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Mesoporous silica nanoparticles (MSNPs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Organically modified (ethylene-bridged) MSNPs (MONs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Nanogels | Dual-responsive nanogels[ | Gentamicin | Mouse peritonitis model |
| Nanogels | Gelatin-alginate composite nanogels[ | Enrofloxacin | Sau-SCV strain |
| Nanogels | Chitosan oligosaccharide-carboxymethyl cellulose composite nanogels[ | Tilmicosin | Sau-SCV strain |
| Nanogels | Composite nanogels[ | Florfenicol | Murine mastitis model |
| Nanogels | Chitosan composite nanogels[ | Glycyrrhizic acid | Sau-SCV strain |
| [1] | SHI T W, WU Q, RUAN Z S, et al. Resensitizing β-lactams by reprogramming purine metabolism in small colony variant for osteomyelitis treatment[J]. Adv Sci (Weinh), 2025, 12(5): e2410781. |
| [2] | ZHOU S Z, RAO Y F, LI J, et al. Staphylococcus aureus small-colony variants: formation, infection, and treatment[J]. Microbiol Res, 2022, 260: 127040. |
| [3] | MAPAR M, RYDZAK T, HOMMES J W, et al. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants[J]. Trends Microbiol, 2025, 33(2): 223-232. |
| [4] | GIMZA B D, CASSAT J E. Mechanisms of antibiotic failure during Staphylococcus aureus osteomyelitis[J]. Front Immunol, 2021, 12: 638085. |
| [5] | XU A M, ZHANG X X, WANG T, et al. Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: adaption, evolution, and biotechnological potential[J]. Biotechnol Adv, 2021, 53: 107862. |
| [6] | TSUJINO Y, OGAWA E, ITO K. Thymidine-dependent small-colony variants of Staphylococcus aureus isolated from infective endocarditis in a postlung transplant patient[J]. Transpl Infect Dis, 2024, 26(1): e14176. |
| [7] | GOORMAGHTIGH F, VAN BAMBEKE F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance[J]. Expert Rev Anti Infect Ther, 2024, 22(1/2/3): 87-101. |
| [8] | GUÉRILLOT R, KOSTOULIAS X, DONOVAN L, et al. Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections[J]. Proc Natl Acad Sci USA, 2019, 116(40): 20135-20140. |
| [9] | PROKOPCZUK F I, IM H, CAMPOS-GOMEZ J, et al. Engineered superinfective pf phage prevents dissemination of Pseudomonas aeruginosa in a mouse burn model[J]. mBio, 2023, 14(3): e0047223. |
| [10] | TASHIRO Y, EIDA H, ISHII S, et al. Generation of small colony variants in biofilms by Escherichia coli harboring a conjugative F plasmid[J]. Microbes Environ, 2017, 32(1): 40-46. |
| [11] | WONG FOK LUNG T, MONK I R, ACKER K P, et al. Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis[J]. Nat Microbiol, 2020, 5(1): 141-153. |
| [12] | KWIECINSKI J M, HORSWILL A R. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms[J]. Curr Opin Microbiol, 2020, 53: 51-60. |
| [13] | SHEYKHSARAN E, ABBASI A, MEMAR M Y, et al. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions[J]. Diagn Microbiol Infect Dis, 2024, 109(3): 116294. |
| [14] | TOMAZ A P O, SOUZA D C, COGO L L, et al. Thymidine-dependent Staphylococcus aureus and lung function in patients with cystic fibrosis: a 10-year retrospective case-control study[J]. J Bras Pneumol, 2024, 50(4): e20240026. |
| [15] | BURFORD-GORST C M, KIDD S P. Phenotypic variation in Staphylococcus aureus during colonisation involves antibiotic-tolerant cell types[J]. Antibiotics (Basel), 2024, 13(9): 845. |
| [16] | LI X F, BUSCH L M, PIERSMA S, et al. Functional and proteomic dissection of the contributions of CodY, SigB and the hibernation promoting factor HPF to interactions of Staphylococcus aureus USA300 with human lung epithelial cells[J]. J Proteome Res, 2024, 23(10): 4742-4760. |
| [17] | ALVES J, VRIELING M, RING N, et al. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival[J]. mBio, 2024, 15(6): e0034624. |
| [18] | STRAUB J, BAERTL S, VERHEUL M, et al. Antimicrobial resistance: biofilms, small colony variants, and intracellular bacteria[J]. Injury, 2024, 55(Suppl 6): 111638. |
| [19] | JOSSE J, LAURENT F, DIOT A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms[J]. Front Microbiol, 2017, 8: 2433. |
| [20] | XIE S, LI Y, CAO W X, et al. Dual-responsive nanogels with cascaded gentamicin release and lysosomal escape to combat intracellular small colony variants for peritonitis and sepsis therapies[J]. Adv Healthc Mater, 2024, 13(14): e2303671. |
| [21] | SEDLYAROV V, EICHNER R, GIRARDI E, et al. The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification[J]. Cell Host Microbe, 2018, 23(6): 766-774.e5. |
| [22] | VOLK C F, PROCTOR R A, ROSE W E. The complex intracellular lifecycle of Staphylococcus aureus contributes to reduced antibiotic efficacy and persistent bacteremia[J]. Int J Mol Sci, 2024, 25(12): 6486. |
| [23] | MOLDOVAN A, FRAUNHOLZ M J. In or out: phagosomal escape of Staphylococcus aureus[J]. Cell Microbiol, 2019, 21(3): e12997. |
| [24] | MAGRYŚ A, BOGUT A. microRNA hsa-let-7a facilitates staphylococcal small colony variants survival in the THP-1 macrophages by reshaping inflammatory responses[J]. Int J Med Microbiol, 2021, 311(8): 151542. |
| [25] | GUO H N, TONG Y C, CHENG J H, et al. Biofilm and small colony variants-an update on Staphylococcus aureus strategies toward drug resistance[J]. Int J Mol Sci, 2022, 23(3): 1241. |
| [26] | ZHENG X K, FANG R C, WANG C, et al. Resistance profiles and biological characteristics of rifampicin-resistant Staphylococcus aureus small-colony variants[J]. Infect Drug Resist, 2021, 14: 1527-1536. |
| [27] | GOUNANI Z, KARAMAN D Ş, VENU A P, et al. Coculture of P. aeruginosa and S. aureus on cell derived matrix: An in vitro model of biofilms in infected wounds[J]. J Microbiol Methods, 2020, 175: 105994. |
| [28] | DOUGLAS E J A, DUGGAN S, BRIGNOLI T, et al. The MpsB protein contributes to both the toxicity and immune evasion capacity of Staphylococcus aureus[J]. Microbiology (Reading), 2021, 167(10): 001096. |
| [29] | HÄFFNER N, BÄR J, DENGLER HAUNREITER V, et al. Intracellular environment and agr system affect colony size heterogeneity of Staphylococcus aureus[J]. Front Microbiol, 2020, 11: 1415. |
| [30] | ZHOU K X, LI C, CHEN D M, et al. A review on nanosystems as an effective approach against infections of Staphylococcus aureus[J]. Int J Nanomedicine, 2018, 13: 7333-7347. |
| [31] | CAMPBELL A J, DOTEL R, BRADDICK M, et al. Clindamycin adjunctive therapy for severe Staphylococcus aureus treatment evaluation (CASSETTE): an open-labelled pilot randomized controlled trial[J]. JAC Antimicrob Resist, 2022, 4(1): dlac014. |
| [32] | SUBRAMANIAM S, JOYCE P, CONN C E, et al. Cellular uptake and in vitro antibacterial activity of lipid-based nanoantibiotics are influenced by protein Corona[J]. Biomater Sci, 2024, 12(13): 3411-3422. |
| [33] | LANGLOIS J P, LAROSE A, BROUILLETTE E, et al. Mode of antibacterial action of tomatidine C3-diastereoisomers[J]. Molecules, 2024, 29(2): 343. |
| [34] | VESTERGAARD M, ROSHANAK S, INGMER H. Targeting the ATP synthase in Staphylococcus aureus small colony variants, Streptococcus pyogenes and pathogenic fungi[J]. Antibiotics (Basel), 2021, 10(4): 376. |
| [35] | BERBERICH C E, JOSSE J, LAURENT F, et al. Dual antibiotic loaded bone cement in patients at high infection risks in arthroplasty: rationale of use for prophylaxis and scientific evidence[J]. World J Orthop, 2021, 12(3): 119-128. |
| [36] | JOOSTEN U, JOIST A, GOSHEGER G, et al. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis[J]. Biomaterials, 2005, 26(25): 5251-5258. |
| [37] | ENSING G T, VAN HORN J R, VAN DER MEI H C, et al. Copal bone cement is more effective in preventing biofilm formation than Palacos R-G[J]. Clin Orthop Relat Res, 2008, 466(6): 1492-1498. |
| [38] | JAIKUMPUN P, RUKSAKIET K, STERCZ B, et al. Antibacterial effects of bicarbonate in media modified to mimic cystic fibrosis sputum[J]. Int J Mol Sci, 2020, 21(22): 8614. |
| [39] | RÖHRIG C, HUEMER M, LORGÉ D, et al. Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus[J]. mBio, 2020, 11(2): e00209-20. |
| [40] | MAGHREBI S, JOYCE P, JAMBHRUNKAR M, et al. Poly(lactic- co-glycolic) acid-lipid hybrid microparticles enhance the intracellular uptake and antibacterial activity of rifampicin[J]. ACS Appl Mater Interfaces, 2020, 12(7): 8030-8039. |
| [41] | JOYCE P, ULMEFORS H, MAGHREBI S, et al. Enhancing the cellular uptake and antibacterial activity of rifampicin through encapsulation in mesoporous silica nanoparticles[J]. Nanomaterials (Basel), 2020, 10(4): 815. |
| [42] | JAMBHRUNKAR M, MAGHREBI S, DODDAKYATHANAHALLI D, et al. Mesoporous organosilica nanoparticles to fight intracellular staphylococcal aureus infections in macrophages[J]. Pharmaceutics, 2023, 15(4): 1037. |
| [43] | LUO W H, LIU J H, ALGHARIB S A, et al. Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants[J]. J Vet Sci, 2022, 23(3): e48. |
| [44] | LUO W H, LIU J H, ZHANG S L, et al. Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels[J]. J Vet Sci, 2022, 23(1): e1. |
| [45] | LIU J H, JU M J, WU Y F, et al. Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants[J]. J Vet Sci, 2022, 23(5): e78. |
| [46] | JU M J, LIU J H, GUAN D, et al. WITHDRAWN: antibacterial activity of a novel glycyrrhizic acid-loaded chitosan composite nanogel in vitro against Staphylococcus aureus small colony variants[J]. Curr Drug Deliv, 2025. |
| [47] | KARAMI A, FARIVAR F, DE PRINSE T J, et al. Facile multistep synthesis of ZnO-coated β-NaYF4: Yb/Tm upconversion nanoparticles as an antimicrobial photodynamic therapy for persistent Staphylococcus aureus small colony variants[J]. ACS Appl Bio Mater, 2021, 4(8): 6125-6136. |
| [1] | 邹沛辰, 刘鸿宇, 阿衣娜扎尔·艾合买提, 朱亮, 唐亚斌, 雷绘敏. 索托拉西布获得性耐药肺癌细胞的代谢轮廓分析[J]. 上海交通大学学报(医学版), 2025, 45(2): 138-149. |
| [2] | 王珂璇, 刘芳, 涂佳佳, 茅一萍. 基于断面时点流行病学调查方法探究医院抗菌药物的使用[J]. 上海交通大学学报(医学版), 2024, 44(3): 365-372. |
| [3] | 赵富茂, 彭玫, 彭晓露, 舒韦韦, 彭丽. 鲍曼不动杆菌在环境美罗培南浓度变化时耐药性的改变及其机制[J]. 上海交通大学学报(医学版), 2023, 43(11): 1396-1407. |
| [4] | 陆文清, 孟周文理, 虞永峰, 陆舜. 非小细胞肺癌第三代表皮生长因子受体-酪氨酸激酶抑制剂的耐药机制及治疗策略[J]. 上海交通大学学报(医学版), 2022, 42(4): 535-544. |
| [5] | 石亭旺, 陈云丰. 细胞膜包被纳米颗粒的制备及其在抗菌中的应用[J]. 上海交通大学学报(医学版), 2021, 41(7): 953-958. |
| [6] | 徐建华, 江萍, 邓炯. ATP结合盒蛋白G超家族成员2在肺癌中的表达及意义[J]. 上海交通大学学报(医学版), 2021, 41(6): 830-833. |
| [7] | 郝艳云, 俞思慧, 陆静, 顾湘, 张帆, 程金科, 王田实. SIRT3去SUMO化修饰调节乳腺癌细胞MCF7增殖及化疗药物敏感性的研究[J]. 上海交通大学学报(医学版), 2021, 41(12): 1557-1563. |
| [8] | 刘立立1,崔文国1, 2. 负载骨形态发生蛋白2微球的可注射水凝胶的抑菌和成骨性能评价[J]. 上海交通大学学报(医学版), 2020, 40(9): 1184-1192. |
| [9] | 王钰婷1, 2,刘锦燕2,史 册1,赵珺涛1, 2,项明洁1, 2. 白念珠菌ERG3基因敲除及其对耐药性的影响[J]. 上海交通大学学报(医学版), 2020, 40(2): 163-. |
| [10] | 相宜 1, 2,刘立立 1, 2,崔文国 1, 2. 携载抗菌黏性脂质体的水凝胶构建及促进骨修复的研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 947-. |
| [11] | 吕 霖,石 鑫,郭晓奎,秦金红. 耐药肺炎克雷伯菌噬菌体JD902的分离及生物学特性和安全性研究[J]. 上海交通大学学报(医学版), 2019, 39(12): 1389-. |
| [12] | 王磊 1,焦先婷 1,魏真真 1,刘斌 3,刘晓艳 3,余晓丹 1, 2. 孕前和孕期维生素 D缺乏对子代大鼠肠道菌群及抗菌肽 cathelicidin的影响[J]. 上海交通大学学报(医学版), 2018, 38(8): 874-. |
| [13] | 李晖 *,张术涛 *,岳冰. 小分子抗菌肽 KR -12-a5促进人骨髓间充质干细胞成骨分化的作用[J]. 上海交通大学学报(医学版), 2018, 38(8): 881-. |
| [14] | 褚光宇,陈云丰. 纳米金抗菌机制及应用研究进展[J]. 上海交通大学学报(医学版), 2018, 38(11): 1386-. |
| [15] | 许垚,马帅,丁峰. 抗菌肽在脓毒症治疗中的应用进展[J]. 上海交通大学学报(医学版), 2017, 37(8): 1161-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||