
上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (2): 225-229.doi: 10.3969/j.issn.1674-8115.2022.02.014
收稿日期:2021-10-09
出版日期:2022-02-28
发布日期:2022-01-24
通讯作者:
巴乾,电子信箱:qba@shsmu.edu.cn。作者简介:王昊(1996—),男,硕士生;电子信箱:shinku@sjtu.edu.cn。
基金资助:
Hao WANG(
), Ran WANG, Qian BA(
)
Received:2021-10-09
Online:2022-02-28
Published:2022-01-24
Contact:
BA Qian, E-mail: qba@shsmu.edu.cn.Supported by:摘要:
随着生活质量的提高和饮食习惯的改变,人们对食品的要求除了能够满足温饱外,还兼具色、香、味、形、意等方面,其中食品添加剂扮演了十分重要的角色。由于在食品和日用品中,二氧化钛(titanium dioxide,TiO2)常被作为色素添加剂而大量使用,使得人们会不可避免地接触和摄入TiO2纳米材料。基于此,该文就TiO2纳米材料被机体摄入后对消化道内细胞组织及微生物群的影响及该颗粒在肠道炎症的发生和发展中发挥的直接和间接的促炎作用进行综述,从而为进一步提升TiO2纳米材料在食品领域中应用的安全性提供参考。
中图分类号:
王昊, 王然, 巴乾. 食品中二氧化钛纳米材料对消化道组织及肠道微生物群影响的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(2): 225-229.
Hao WANG, Ran WANG, Qian BA. Effects of food-borne titanium dioxide nanomaterials on digestive tract tissues and gastrointestinal microbiome: a review of recent studies[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 225-229.
| 1 | PETERS R J, VAN BEMMEL G, HERRERA-RIVERA Z, et al. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles[J]. J Agric Food Chem, 2014, 62(27): 6285-6293. |
| 2 | CANDÁS-ZAPICO S, KUTSCHER D J, MONTES-BAYÓN M, et al. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS[J]. Talanta, 2018, 180: 309-315. |
| 3 | Toxicological evaluation of some food colours, emulsifiers, stabilizers, anti-caking agents and certain other substances[J]. FAO Nutr Meet Rep Ser, 1970(46A): 1-161. |
| 4 | Specifications for the identity and purity of food additives and their toxiclogical evaluation: some flavouring substances and non-nutritive sweetening agents. Eleventh report of the Joint FAO-WHO Expert Committee on Food Additives[J]. World Health Organ Tech Rep Ser, 1968, 383: 1-18. |
| 5 | EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), YOUNES M, AGGETT P, et al. Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E171)[J]. EFSA J, 2018, 16(7): e05366. |
| 6 | WINKLER H C, NOTTER T, MEYER U, et al. Critical review of the safety assessment of titanium dioxide additives in food[J]. J Nanobiotechnology, 2018, 16(1): 51. |
| 7 | EFSA Panel on Food Additives and Flavourings (FAF), YOUNES M, AQUILINA G, et al. Safety assessment of titanium dioxide (E171) as a food additive[J]. EFSA J, 2021, 19(5): e06585. |
| 8 | PROQUIN H, RODRÍGUEZ-IBARRA C, MOONEN C G, et al. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions[J]. Mutagenesis, 2017, 32(1): 139-149. |
| 9 | CHEN X X, CHENG B, YANG Y X, et al. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum[J]. Small, 2013, 9(9/10): 1765-1774. |
| 10 | ROMPELBERG C, HERINGA M B, VAN DONKERSGOED G, et al. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population[J]. Nanotoxicology, 2016, 10(10): 1404-1414. |
| 11 | PETERS R J B, OOMEN A G, VAN BEMMEL G, et al. Silicon dioxide and titanium dioxide particles found in human tissues[J]. Nanotoxicology, 2020, 14(3): 420-432. |
| 12 | BOUWMEESTER H, VAN DER ZANDE M, JEPSON M A. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnology, 2018, 10(1): e1481. |
| 13 | SHI H, MAGAYE R, CASTRANOVA V, et al. Titanium dioxide nanoparticles: a review of current toxicological data[J]. Part Fibre Toxicol, 2013, 10: 15. |
| 14 | TEUBL B J, LEITINGER G, SCHNEIDER M, et al. The buccal mucosa as a route for TiO2 nanoparticle uptake[J]. Nanotoxicology, 2015, 9(2): 253-261. |
| 15 | TEUBL B J, SCHIMPEL C, LEITINGER G, et al. Interactions between nano-TiO2 and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity[J]. J Hazard Mater, 2015, 286: 298-305. |
| 16 | ZHOU H, PANDYA J K, TAN Y, et al. Role of mucin in behavior of food-grade TiO2 nanoparticles under simulated oral conditions[J]. J Agric Food Chem, 2019, 67(20): 5882-5890. |
| 17 | LI J, YANG S, LEI R, et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure[J]. Nanoscale, 2018, 10(16): 7736-7745. |
| 18 | DUDEFOI W, RABESONA H, RIVARD C, et al. In vitro digestion of food grade TiO2 (E171) and TiO2 nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes[J]. Food Funct, 2021, 12(13): 5975-5988. |
| 19 | KWON D, NHO H W, YOON T H. Transmission electron microscopy and scanning transmission X-ray microscopy studies on the bioaccumulation and tissue level absorption of TiO2 nanoparticles in Daphnia magna[J]. J Nanosci Nanotechnol, 2015, 15(6): 4229-4238. |
| 20 | GUO Z, MARTUCCI N J, MORENO-OLIVAS F, et al. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine[J]. NanoImpact, 2017, 5: 70-82. |
| 21 | FAUST J J, DOUDRICK K, YANG Y, et al. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation[J]. Cell Biol Toxicol, 2014, 30(3): 169-188. |
| 22 | RICHTER J W, SHULL G M, FOUNTAIN J H, et al. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster[J]. Nanotoxicology, 2018, 12(5): 390-406. |
| 23 | GAO Y, YE Y, WANG J, et al. Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose[J]. Nanotoxicology, 2020, 14(10): 1301-1323. |
| 24 | CHEN Z, HAN S, ZHENG P, et al. Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats[J]. Nanoscale, 2020, 12(10): 5973-5986. |
| 25 | LI Q, LI T, LIU C, et al. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions[J]. Nanotoxicology, 2017, 11(9/10): 1087-1101. |
| 26 | ZHAO Y, TANG Y, CHEN L, et al. Restraining the TiO2 nanoparticles-induced intestinal inflammation mediated by gut microbiota in juvenile rats via ingestion of Lactobacillus rhamnosus GG[J]. Ecotoxicol Environ Saf, 2020, 206: 111393. |
| 27 | CHEN Z, HAN S, ZHOU D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo[J]. Nanoscale, 2019, 11(46): 22398-22412. |
| 28 | PINGET G, TAN J, JANAC B, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction[J]. Front Nutr, 2019, 6: 57. |
| 29 | LIMAGE R, TAKO E, KOLBA N, et al. TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model[J]. Small, 2020, 16(21): e2000601. |
| 30 | GUM J R, BYRD J C, HICKS J W, et al. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism[J]. J Biol Chem, 1989, 264(11): 6480-6487. |
| 31 | KUFE D W. Mucins in cancer: function, prognosis and therapy[J]. Nat Rev Cancer, 2009, 9(12): 874-885. |
| 32 | YAN J, WANG D, LI K, et al. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: mechanisms related to intestinal barrier dysfunction involved by gut microbiota[J]. Environ Toxicol Pharmacol, 2020, 80: 103485. |
| 33 | SHAN M, GENTILE M, YEISER J R, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J]. Science, 2013, 342(6157): 447-453. |
| 34 | TADA-OIKAWA S, ICHIHARA G, FUKATSU H, et al. Titanium dioxide particle type and concentration influence the inflammatory response in Caco-2 cells[J]. Int J Mol Sci, 2016, 17(4): 576. |
| 35 | BLEVINS L K, CRAWFORD R B, BACH A, et al. Evaluation of immunologic and intestinal effects in rats administered an E171-containing diet, a food grade titanium dioxide (TiO2)[J]. Food Chem Toxicol, 2019, 133: 110793. |
| 36 | DORIER M, BÉAL D, MARIE-DESVERGNE C, et al. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress[J]. Nanotoxicology, 2017, 11(6): 751-761. |
| 37 | TALAMINI L, GIMONDI S, VIOLATTO M B, et al. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status[J]. Nanotoxicology, 2019, 13(8): 1087-1101. |
| 38 | WANI M R, MAHESHWARI N, SHADAB G. Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study[J]. Environ Sci Pollut Res Int, 2021, 28(18): 22664-22678. |
| 39 | MU W, WANG Y, HUANG C, et al. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice[J]. J Agric Food Chem, 2019, 67(33): 9382-9389. |
| 40 | DUDEFOI W, MONIZ K, ALLEN-VERCOE E, et al. Impact of food grade and nano-TiO2 particles on a human intestinal community[J]. Food Chem Toxicol, 2017, 106(Pt A): 242-249. |
| 41 | CHEN Z, ZHOU D, HAN S, et al. Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles[J]. Part Fibre Toxicol, 2019, 16(1): 48. |
| 42 | KOLBA N, GUO Z, OLIVAS F M, et al. Intra-amniotic administration (Gallus gallus) of TiO2, SiO2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations[J]. Food Chem Toxicol, 2020, 135: 110896. |
| 43 | WANG X, KOLBA N, LIANG J, et al. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts[J]. Food Funct, 2019, 10(8): 4834-4843. |
| 44 | FRÖHLICH E E, FRÖHLICH E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota[J]. Int J Mol Sci, 2016, 17(4): 509. |
| 45 | ZENG M Y, INOHARA N, NUÑEZ G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut[J]. Mucosal Immunol, 2017, 10(1): 18-26. |
| 46 | CAO X, HAN Y, GU M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: gut microbiota dysbiosis, colonic inflammation, and proteome alterations[J]. Small, 2020, 16(36): e2001858. |
| 47 | KURTZ C C, MITCHELL S, NIELSEN K, et al. Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice[J]. J Appl Toxicol, 2020, 40(10): 1384-1395. |
| 48 | BARANOWSKA-WÓJCIK E, GUSTAW K, SZWAJGIER D, et al. Four types of TiO2 reduced the growth of selected lactic acid bacteria strains[J]. Foods, 2021, 10(5): 939. |
| 49 | KHAN S T, SALEEM S, AHAMED M, et al. Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: an in vitro and in vivo study[J]. Appl Microbiol Biotechnol, 2019, 103(16): 6689-6700. |
| 50 | LU Y C, YEH W C, OHASHI P S. LPS/TLR4 signal transduction pathway[J]. Cytokine, 2008, 42(2): 145-151. |
| [1] | 鲁佳艺, 刘锦喆, 郭尚春, 陶诗聪. 纳米材料通过降低活性氧水平促进骨组织再生的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 487-492. |
| [2] | PANDIT Roshan, 卢君瑶, 何立珩, 包玉洁, 季萍, 陈颖盈, 许洁, 王颖. 肿瘤坏死因子-α在新型冠状病毒感染合并肾损伤中的作用[J]. 上海交通大学学报(医学版), 2025, 45(1): 1-10. |
| [3] | 苏莉青, 张洁, 窦雯玥, 李梦雪, 张雨萌, 常健. 基于COM-B模型的消化道肿瘤术后患者口服营养补充依从性研究[J]. 上海交通大学学报(医学版), 2024, 44(10): 1213-1220. |
| [4] | 过丽强, 赵世天, 舒冰. Notch信号通路在骨折愈合过程中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 222-229. |
| [5] | 胡泽玉, 周铖, 杨林, 马晓燕, 肖海娟, 司海龙. 单形性嗜上皮性肠T细胞淋巴瘤致反复消化道出血1例[J]. 上海交通大学学报(医学版), 2023, 43(1): 132-136. |
| [6] | 唐闯, 张鑫, 张婷. 艾司奥美拉唑镁联合白眉蛇毒血凝酶对非静脉曲张性上消化道出血的治疗效果观察[J]. 上海交通大学学报(医学版), 2022, 42(11): 1576-1581. |
| [7] | 张瀛丹, 王振. 肠道微生物群在强迫症发病机制及治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2021, 41(7): 967-971. |
| [8] | 奚黎婷, 朱锦舟, 虞晨燕, 倪柳菁, 许春芳, 吴爱荣. 急性非静脉曲张性上消化道出血患者再出血预测模型和新型评分系统的构建[J]. 上海交通大学学报(医学版), 2021, 41(11): 1491-1497. |
| [9] | 陈 蓦,陈 俊,陈世益. 基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(4): 530-. |
| [10] | 王 齐1*,朱冠娅2*,谢 挺1,葛 奎1,牛轶雯3. ATP代谢及嘌呤信号受体在糖尿病创面愈合炎症反应阶段的变化[J]. 上海交通大学学报(医学版), 2020, 40(1): 10-. |
| [11] | 储维薇,徐洁颖,李尚,翟君钰,杜艳芝. 脱氢表雄酮诱导的多囊卵巢综合征模型大鼠的肠道菌群研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 975-. |
| [12] | 陆海洋,赵维莅. 胃肠道微生物在肿瘤发生中的作用[J]. 上海交通大学学报(医学版), 2019, 39(9): 1083-. |
| [13] | 范霞 1,夏碧丽 2,吕霖 1,徐梦莎 3,李佳茵 1,何平 1. 小鼠巨噬细胞对钩端螺旋体 56606v和 56606a的吞噬及炎症应答的比较研究[J]. 上海交通大学学报(医学版), 2019, 39(1): 16-. |
| [14] | 菅朝慧,包玉倩. 自噬与非酒精性脂肪性肝病的研究进展[J]. 上海交通大学学报(医学版), 2018, 38(6): 690-. |
| [15] | 刘汉玮,于栋祯,殷善开. 瞬时受体电位 M2型离子通道配体及功能研究进展[J]. 上海交通大学学报(医学版), 2018, 38(12): 1484-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||