
上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (5): 631-640.doi: 10.3969/j.issn.1674-8115.2023.05.015
李瑛1,2(
), 谭阳霞2, 尹虹心2, 蒋雁翎1,2, 陈立1, 蒙国宇2(
)
收稿日期:2022-12-19
接受日期:2023-02-24
出版日期:2023-05-28
发布日期:2023-07-11
通讯作者:
蒙国宇,电子邮箱:guoyumeng@shsmu.edu.cn。作者简介:李 瑛(1994—),女,硕士生;电子信箱:3258414023@qq.com。
基金资助:
LI Ying1,2(
), TAN Yangxia2, YIN Hongxin2, JIANG Yanling1,2, CHEN Li1, MENG Guoyu2(
)
Received:2022-12-19
Accepted:2023-02-24
Online:2023-05-28
Published:2023-07-11
Contact:
MENG Guoyu, E-mail: guoyumeng@shsmu.edu.cn.Supported by:摘要:
由染色体易位引起的融合基因已成为白血病的主要致病因素。锌指蛋白384(zinc finger protein 384,ZNF384)融合作为急性白血病(acute leukemia,AL)中的非典型融合亚型,在不同的年龄群体中广泛发生。ZNF384具有丰富的融合伴侣,其中E1A结合蛋白p300(E1A binding protein p300,EP300)、转录因子3(transcription factor 3,TCF3)、TATA-box binding protein associated factor 15(TAF15)的融合频率最高。这些融合蛋白均保留了完整的ZNF384结构,但融合伴侣则有不同程度的缺失,说明不同的ZNF384融合亚型之间具有相似的致AL发生发展机制。现有研究主要认为ZNF384融合蛋白通过染色质重塑调控下游蛋白的转录表达,在造血干细胞的分化、癌细胞的增殖凋亡和基因组修复中发挥潜在作用。ZNF384融合患者同时表达淋系和髓系特有的抗原,在疾病的进展中具有谱系转化特性,丰富的免疫表型给治疗方式带来了不确定性,并与融合亚型、发病年龄一起影响患者的临床结局。该文通过对近10年已发表的案例和大型队列研究进行统计归纳分析,进一步确认了ZNF384融合及其各亚型AL在现有研究背景下的发生频率,总结了已有的机制信息,并对不同治疗方式下ZNF384融合患者的预后作了简要分析,以期为后续针对这一独特亚型AL的诊疗和研究提供参考。
中图分类号:
李瑛, 谭阳霞, 尹虹心, 蒋雁翎, 陈立, 蒙国宇. ZNF384融合亚型急性白血病的发病机制及预后研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 631-640.
LI Ying, TAN Yangxia, YIN Hongxin, JIANG Yanling, CHEN Li, MENG Guoyu. Research progress in the pathogenesis and prognosis of ZNF384 fusion subtype acute leukemia[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 631-640.
| Number | Total | Child (≤18 years) | Adult (>18 years) | ZNF384 fusion | ALL | MPAL | Publication year |
|---|---|---|---|---|---|---|---|
| 1 | 173 | 4 | ‒ | 4 | 4 | ‒ | 2022[ |
| 2 | 652 | ‒ | 11 | 11 | 11 | ‒ | 2022[ |
| 3 | 643 | 17 | ‒ | 17 | 9 | 8 | 2021[ |
| 4 | 242 | ‒ | 47 | 47 | 47 | ‒ | 2021[ |
| 5 | 1 229 | ‒ | 9 | 9 | 9 | ‒ | 2021[ |
| 6 | 598 | 6 | 1 | 7 | 7 | ‒ | 2021[ |
| 7 | 56 | 1 | 9 | 10 | 9 | 1 | 2020[ |
| 8 | 37 | ‒ | 3 | 3 | 3 | ‒ | 2020[ |
| 9 | 115 | 15 | ‒ | 15 | ‒ | 15 | 2018[ |
| 10 | 274 | 4 | 6 | 10 | 10 | ‒ | 2018[ |
| 11 | 1 223 | 39 | 22 | 61 | 61 | ‒ | 2018[ |
| 12 | 216 | 25 | ‒ | 25 | 25 | ‒ | 2017[ |
| 13 | 240 | 7 | ‒ | 7 | 6 | 1 | 2016[ |
| 14 | 401 | 6 | ‒ | 6 | 6 | ‒ | 2015[ |
| Summary | 6 099 | 124 | 108 | 232 | 207 | 25 |
表1 ZNF384 融合在AL中不同年龄段、不同免疫表型中的发生情况(n)
Tab 1 Frequency of ZNF384 fusion in different age groups and different immune phenotypes in AL (n)
| Number | Total | Child (≤18 years) | Adult (>18 years) | ZNF384 fusion | ALL | MPAL | Publication year |
|---|---|---|---|---|---|---|---|
| 1 | 173 | 4 | ‒ | 4 | 4 | ‒ | 2022[ |
| 2 | 652 | ‒ | 11 | 11 | 11 | ‒ | 2022[ |
| 3 | 643 | 17 | ‒ | 17 | 9 | 8 | 2021[ |
| 4 | 242 | ‒ | 47 | 47 | 47 | ‒ | 2021[ |
| 5 | 1 229 | ‒ | 9 | 9 | 9 | ‒ | 2021[ |
| 6 | 598 | 6 | 1 | 7 | 7 | ‒ | 2021[ |
| 7 | 56 | 1 | 9 | 10 | 9 | 1 | 2020[ |
| 8 | 37 | ‒ | 3 | 3 | 3 | ‒ | 2020[ |
| 9 | 115 | 15 | ‒ | 15 | ‒ | 15 | 2018[ |
| 10 | 274 | 4 | 6 | 10 | 10 | ‒ | 2018[ |
| 11 | 1 223 | 39 | 22 | 61 | 61 | ‒ | 2018[ |
| 12 | 216 | 25 | ‒ | 25 | 25 | ‒ | 2017[ |
| 13 | 240 | 7 | ‒ | 7 | 6 | 1 | 2016[ |
| 14 | 401 | 6 | ‒ | 6 | 6 | ‒ | 2015[ |
| Summary | 6 099 | 124 | 108 | 232 | 207 | 25 |
图2 ZNF384 部分融合亚型的断点统计以及融合蛋白结构图Note: The exon6/6-exon2/3 on the left side of the figure indicates that there are two types of fusion breakpoints between EP300 and ZNF384, exon6-exon2 and exon6-exon3. The small colored squares below the figure represent protein domains. TAZ1—transcriptional adapter zinc binding 1.
Fig 2 Breakpoint statistics and fusion protein structure diagram of some ZNF384 fusion subtypes
| 1 | QIAN M X, ZHANG H, KHAM S K, et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP[J]. Genome Res, 2017, 27(2): 185-195. |
| 2 | LI J F, DAI Y T, LILLJEBJÖRN H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1, 223 cases[J]. Proc Natl Acad Sci USA, 2018, 115(50): E11711-E11720. |
| 3 | ZALIOVA M, STUCHLY J, WINKOWSKA L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort[J]. Haematologica, 2019, 104(7): 1396-1406. |
| 4 | LI J F, DAI Y T, WU L, et al. Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia[J]. Front Med, 2021, 15(3): 347-371. |
| 5 | MÄKINEN V P, REHN J, BREEN J, et al. Multi-cohort transcriptomic subtyping of B-cell acute lymphoblastic leukemia[J]. Int J Mol Sci, 2022, 23(9): 4574. |
| 6 | LIU Y F, WANG B Y, ZHANG W N, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia[J]. EBioMedicine, 2016, 8: 173-183. |
| 7 | QIN Y Z, JIANG Q, XU L P, et al. The prognostic significance of ZNF384 fusions in adult ph-negative B-cell precursor acute lymphoblastic leukemia: a comprehensive cohort study from a single Chinese center[J]. Front Oncol, 2021, 11: 632532. |
| 8 | GOCHO Y, KIYOKAWA N, ICHIKAWA H, et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia[J]. Leukemia, 2015, 29(12): 2445-2448. |
| 9 | DICKERSON K M, QU C X, GAO Q S, et al. ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia[J]. Blood Cancer Discov, 2022, 3(3): 240-263. |
| 10 | WU Z Y, ZHANG F, LIU C Z, et al. Whole transcriptome sequencing reveals a TCF4-ZNF384 fusion in acute lymphoblastic leukemia[J]. Front Oncol, 2022, 12: 900054. |
| 11 | HIRABAYASHI S, BUTLER E R, OHKI K, et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group[J]. Leukemia, 2021, 35(11): 3272-3277. |
| 12 | ALEXANDER T B, GU Z H, IACOBUCCI I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia[J]. Nature, 2018, 562(7727): 373-379. |
| 13 | HIRABAYASHI S, OHKI K, NAKABAYASHI K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype[J]. Haematologica, 2017, 102(1): 118-129. |
| 14 | YAGUCHI A, ISHIBASHI T, TERADA K, et al. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells[J]. Int J Hematol, 2017, 106(2): 269-281. |
| 15 | MCCLURE B J, HEATLEY S L, KOK C H, et al. Pre-B acute lymphoblastic leukaemia recurrent fusion, EP300-ZNF384, is associated with a distinct gene expression[J]. Br J Cancer, 2018, 118(7): 1000-1004. |
| 16 | YAMAMOTO K, KAWAMOTO S, MIZUTANI Y, et al. Mixed phenotype acute leukemia with t (12;17) (p13;q21)/TAF15-ZNF384 and other chromosome abnormalities[J]. Cytogenet Genome Res, 2016, 149(3): 165-170. |
| 17 | PING N N, QIU H Y, WANG Q, et al. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion[J]. J Hematol Oncol, 2015, 8: 100. |
| 18 | MARTINI A, LA STARZA R, JANSSEN H, et al. Recurrent rearrangement of the Ewing′s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia[J]. Cancer Res, 2002, 62(19): 5408-5412. |
| 19 | IACOBUCCI I, KIMURA S, MULLIGHAN C G. Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia[J]. J Clin Med, 2021, 10(17): 3792. |
| 20 | MA J, GUAN J, CHEN B. ZNF384 rearrangement in acute lymphocytic leukemia with renal involvement as the first manifestation is associated with a poor prognosis: a case report[J]. Mol Cytogenet, 2022, 15(1): 4. |
| 21 | NISHIMURA A, HASEGAWA D, HIRABAYASHI S, et al. Very late relapse cases of TCF3-ZNF384-positive acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2019, 66(11): e27891. |
| 22 | JING Y, LI Y F, WAN H, et al. Detection of EP300-ZNF384 fusion in patients with acute lymphoblastic leukemia using RNA fusion gene panel sequencing[J]. Ann Hematol, 2020, 99(11): 2611-2617. |
| 23 | OBERLEY M J, GAYNON P S, BHOJWANI D, et al. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2018, 65(9): e27265. |
| 24 | SCHWAB C, HARRISON C J. Advances in B-cell precursor acute lymphoblastic leukemia genomics[J]. HemaSphere, 2018, 2(4): e53. |
| 25 | GERR H, ZIMMERMANN M, SCHRAPPE M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations[J]. Br J Haematol, 2010, 149(1): 84-92. |
| 26 | TRAN T H, LANGLOIS S, MELOCHE C, et al. Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16-001[J]. Blood Adv, 2022, 6(4): 1329-1341. |
| 27 | MOORMAN A V, BARRETTA E, BUTLER E R, et al. Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study[J]. Leukemia, 2022, 36(3): 625-636. |
| 28 | ZALIOVA M, WINKOWSKA L, STUCHLY J, et al. A novel class of ZNF384 aberrations in acute leukemia[J]. Blood Adv, 2021, 5(21): 4393-4397. |
| 29 | PAIETTA E, ROBERTS K G, WANG V, et al. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL[J]. Blood, 2021, 138(11): 948-958. |
| 30 | JEHA S, CHOI J, ROBERTS K G, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy[J]. Blood Cancer Discov, 2021, 2(4): 326-337. |
| 31 | 姚子龙, 李艳芬, 李猛, 等. 伴EP300-ZNF384融合基因阳性的急性B淋巴细胞白血病临床特点分析[J]. 中国实验血液学杂志, 2020, 28(1): 24-28. |
| YAO Z L, LI Y F, LI M, et al. Analysis of clinical characteristics of acute B lymphoblastic leukemia with EP300-ZNF384 fusion gene positive [J]. Journal of Experimental Hematology, 2020, 28(1): 24-28. | |
| 32 | SHAGO M, ABLA O, HITZLER J, et al. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion[J]. Pediatr Blood Cancer, 2016, 63(11): 1915-1921. |
| 33 | OTA T, SUZUKI Y, NISHIKAWA T, et al. Complete sequencing and characterization of 21, 243 full-length human cDNAs[J]. Nat Genet, 2004, 36(1): 40-45. |
| 34 | SEETHARAM A, BAI Y, STUART G W. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia[J]. BMC Genomics, 2010, 11: 276. |
| 35 | FEISTER H A, TORRUNGRUANG K, THUNYAKITPISAL P, et al. NP/NMP4 transcription factors have distinct osteoblast nuclear matrix subdomains[J]. J Cell Biochem, 2000, 79(3): 506-517. |
| 36 | FAN Z Y, TARDIF G, BOILEAU C, et al. Identification in human osteoarthritic chondrocytes of proteins binding to the novel regulatory site AGRE in the human matrix metalloprotease 13 proximal promoter[J]. Arthritis Rheum, 2006, 54(8): 2471-2480. |
| 37 | YOUNG S K, SHAO Y, BIDWELL J P, et al. Nuclear matrix protein 4 is a novel regulator of ribosome biogenesis and controls the unfolded protein response via repression of Gadd34 expression[J]. J Biol Chem, 2016, 291(26): 13780-13788. |
| 38 | JIN H L, VAN'T HOF R J, ALBAGHA O M, et al. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis[J]. Hum Mol Genet, 2009, 18(15): 2729-2738. |
| 39 | SHAO Y, WICHERN E, CHILDRESS P J, et al. Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E749-E772. |
| 40 | YAN Z H, ZHOU Y, YANG Y, et al. Zinc finger protein 384 enhances colorectal cancer metastasis by upregulating MMP2[J]. Oncol Rep, 2022, 47(3): 49. |
| 41 | GAO Y Y, LING Z Y, ZHU Y R, et al. The histone acetyltransferase HBO1 functions as a novel oncogenic gene in osteosarcoma[J]. Theranostics, 2021, 11(10): 4599-4615. |
| 42 | WAN F, ZHOU J, CHEN X, et al. Overexpression and mutation of ZNF384 is associated with favorable prognosis in breast cancer patients[J]. Transl Cancer Res, 2019, 8(3): 779-787. |
| 43 | MENG Q X, WANG K N, LI J H, et al. ZNF384-ZEB1 feedback loop regulates breast cancer metastasis[J]. Mol Med, 2022, 28(1): 111. |
| 44 | CHEN G, CHEN J X, QIAO Y T, et al. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair[J]. Nucleic Acids Res, 2018, 46(3): 1266-1279. |
| 45 | SINGH J K, SMITH R, ROTHER M B, et al. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining[J]. Nat Commun, 2021, 12(1): 6560. |
| 46 | CHILDRESS P, STAYROOK K R, ALVAREZ M B, et al. Genome-wide mapping and interrogation of the Nmp4 antianabolic bone axis[J]. Mol Endocrinol, 2015, 29(9): 1269-1285. |
| 47 | LIU S G, YUAN X Q, SU H, et al. ZNF384: a potential therapeutic target for psoriasis and alzheimer's disease through inflammation and metabolism[J]. Front Immunol, 2022, 13: 892368. |
| 48 | NYQUIST K B, THORSEN J, ZELLER B, et al. Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t (12;17) (p13;q12)[J]. Cancer Genet, 2011, 204(3): 147-152. |
| 49 | CHAN H M, LA THANGUE N B. p300/CBP proteins: hats for transcriptional bridges and scaffolds[J]. J Cell Sci, 2001, 114(pt 13): 2363-2373. |
| 50 | BLACK J C, CHOI J E, LOMBARDO S R, et al. A mechanism for coordinating chromatin modification and preinitiation complex assembly[J]. Mol Cell, 2006, 23(6): 809-818. |
| 51 | DUTTO I, SCALERA C, PROSPERI E. CREBBP and p300 lysine acetyl transferases in the DNA damage response[J]. Cell Mol Life Sci, 2018, 75(8): 1325-1338. |
| 52 | ATTAR N, KURDISTANI S K. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer[J]. Cold Spring Harb Perspect Med, 2017, 7(3): a026534. |
| 53 | ENGEL I, MURRE C. The function of E- and Id proteins in lymphocyte development[J]. Nat Rev Immunol, 2001, 1(3): 193-199. |
| 54 | ZHANG X, YUAN X, ZHU W, et al. SALL4: an emerging cancer biomarker and target[J]. Cancer Lett, 2015, 357(1): 55-62. |
| 55 | JIANG Y, JI Q K, LONG X Y, et al. CLCF1 is a novel potential immune-related target with predictive value for prognosis and immunotherapy response in glioma[J]. Front Immunol, 2022, 13: 810832. |
| 56 | DEMERLÉ C, GORVEL L, OLIVE D. BTLA-HVEM couple in health and diseases: insights for immunotherapy in lung cancer[J]. Front Oncol, 2021, 11: 682007. |
| 57 | ALVES J, WURDAK H, GARAY-MALPARTIDA H M, et al. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and-7[J]. Biochem Biophys Res Commun, 2009, 384(4): 495-500. |
| 58 | ROSSOW K L, JANKNECHT R. The Ewing′s sarcoma gene product functions as a transcriptional activator[J]. Cancer Res, 2001, 61(6): 2690-2695. |
| 59 | GEORGAKOPOULOS N, DIAMANTOPOULOS P, MICCI F, et al. An adult patient with early pre-B acute lymphoblastic leukemia with t(12;17)(p13;q21)/ZNF384-TAF15[J]. In Vivo, 2018, 32(5): 1241-1245. |
| 60 | LIANG J J, PENG H, WANG J J, et al. Relationship between the structure and function of the transcriptional regulator E2A[J]. J Biol Res (Thessalon), 2021, 28(1): 15. |
| 61 | RAO C, MALAGUTI M, MASON J O, et al. The transcription factor E2A drives neural differentiation in pluripotent cells[J]. Development, 2020, 147(12): dev184093. |
| 62 | LÓPEZ-MENÉNDEZ C, VÁZQUEZ-NAHARRO A, SANTOS V, et al. E2A modulates stemness, metastasis, and therapeutic resistance of breast cancer[J]. Cancer Res, 2021, 81(17): 4529-4544. |
| 63 | ZHOU B Q, CHU X R, TIAN H, et al. The clinical outcomes and genomic landscapes of acute lymphoblastic leukemia patients with E2A-PBX1: a 10-year retrospective study[J]. Am J Hematol, 2021, 96(11): 1461-1471. |
| 64 | BRAMBILLASCA F, MOSNA G, BALLABIO E, et al. Promoter analysis of TFPT (FB1), a molecular partner of TCF3 (E2A) in childhood acute lymphoblastic leukemia[J]. Biochem Biophys Res Commun, 2001, 288(5): 1250-1257. |
| 65 | BAUDIS M, PRIMA V, TUNG Y H, et al. ABCB1 over-expression and drug-efflux in acute lymphoblastic leukemia cell lines with t(17;19) and E2A-HLF expression[J]. Pediatr Blood Cancer, 2006, 47(6): 757-764. |
| 66 | ZHAO X J, WANG P, DIEDRICH J D, et al. Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia[J]. Nat Commun, 2022, 13(1): 5401. |
| 67 | GRIFFITH M, GRIFFITH O L, KRYSIAK K, et al. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia[J]. Exp Hematol, 2016, 44(7): 603-613. |
| 68 | UNIPROT CONSORTIUM. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2021, 49(d1): D480-D489. |
| [1] | 何嘉音, 陈思远, 施晴, 张慕晨, 易红梅, 董磊, 钱樱, 王黎, 程澍, 许彭鹏, 赵维莅. 肾上腺累及的弥漫性大B细胞淋巴瘤患者临床病理特征、基因突变谱及预后分析[J]. 上海交通大学学报(医学版), 2025, 45(9): 1194-1201. |
| [2] | 陈思远, 施晴, 付迪, 王黎, 程澍, 许彭鹏, 赵维莅. 肺受累弥漫大B细胞淋巴瘤临床病理特征、基因突变谱及预后分析[J]. 上海交通大学学报(医学版), 2025, 45(9): 1214-1220. |
| [3] | 胥瀚文, 陈墨馨, 梁小乙, 舒琴, 聂琬钦, 杨雪峰, 沈慜瑄, 黎晓静, 曹禹, 李琳. 基于面部照片的眼病智能诊断研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1249-1255. |
| [4] | 黄昕, 刘家辉, 叶敬文, 钱文莉, 许万星, 王琳. 基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1009-1016. |
| [5] | 严治, 吴星玥, 姚卫芹, 颜灵芝, 金松, 商京晶, 施晓兰, 吴德沛, 傅琤琤. 免疫不全麻痹在新诊断多发性骨髓瘤患者中的动态变化及预后意义[J]. 上海交通大学学报(医学版), 2025, 45(7): 807-814. |
| [6] | 张兴利, 田洁, 罗菁, 刘倩, 欧阳皖雁, 邱宏春, 王焰, 糜坚青. 剂量减低的来那度胺/美法仑/醋酸泼尼松方案治疗老年虚弱新诊断多发性骨髓瘤的效果分析[J]. 上海交通大学学报(医学版), 2025, 45(7): 815-822. |
| [7] | 王高明, 崔然, 黎彦璟, 刘颖斌. KRAS R68G继发突变引发KRASG12D靶向抑制剂MRTX1133耐药的机制研究[J]. 上海交通大学学报(医学版), 2025, 45(6): 705-716. |
| [8] | 李卓杭, 于新迪, 任婧雅, 沈佳, 董素贞, 王伟. 主动脉缩窄端侧吻合纠治术后的神经系统预后分析[J]. 上海交通大学学报(医学版), 2025, 45(6): 753-759. |
| [9] | 汤开然, 冯成领, 韩邦旻. 基于单细胞测序与转录组测序构建M2巨噬细胞基因相关的前列腺癌预后模型[J]. 上海交通大学学报(医学版), 2025, 45(5): 549-561. |
| [10] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [11] | 许天芸, 沈奕茗, 姜萌. 射血分数改善型心力衰竭的临床管理: 治疗与维持[J]. 上海交通大学学报(医学版), 2025, 45(4): 493-499. |
| [12] | 刘田恬, 赵奕琳, 宁菁菁, 张育才, 王春霞. 儿童脓毒症预后相关长链非编码RNA筛选及竞争性内源RNA网络的构建[J]. 上海交通大学学报(医学版), 2025, 45(3): 282-291. |
| [13] | 刘楚萱, 左佳鑫, 熊屏. 基于超声评分参数及临床指标的列线图鉴别原发性干燥综合征与IgG4相关唾液腺炎[J]. 上海交通大学学报(医学版), 2025, 45(3): 373-380. |
| [14] | 刘佳, 任灵杰, 施敏敏, 唐笑梅, 马芳芳, 秦洁洁. COL12A作为一种新型的胰腺导管腺癌血清诊断标志物的鉴定与评价[J]. 上海交通大学学报(医学版), 2025, 45(10): 1342-1352. |
| [15] | 王博恩, 陈思远, 施晴, 张慕晨, 易红梅, 董磊, 王黎, 程澍, 许彭鹏, 赵维莅. 肾脏累及的弥漫性大B细胞淋巴瘤患者临床病理特征[J]. 上海交通大学学报(医学版), 2024, 44(9): 1162-1168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||