1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
ZHANG Y, WANG X. Targeting the Wnt/β-catenin signaling pathway in cancer[J]. J Hematol Oncol, 2020, 13(1): 165.
|
3 |
NGUYEN V H L, HOUGH R, BERNAUDO S, et al. Wnt/β-catenin signalling in ovarian cancer: insights into its hyperactivation and function in tumorigenesis[J]. J Ovarian Res, 2019, 12(1): 122.
|
4 |
KONI M, PINNARÒ V, BRIZZI M F. The Wnt signalling pathway: a tailored target in cancer[J]. Int J Mol Sci, 2020, 21(20): 7697.
|
5 |
ASEM M S, BUECHLER S, WATES R B, et al. Wnt5a signaling in cancer[J]. Cancers (Basel), 2016, 8(9): 79.
|
6 |
VANDERVORST K, HATAKEYAMA J, BERG A, et al. Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy[J]. Semin Cell Dev Biol, 2018, 81: 78-87.
|
7 |
BUENO M L P, SAAD S T O, ROVERSI F M. Wnt5a in tumor development and progression: a comprehensive review[J]. Biomed Pharmacother, 2022, 155: 113599.
|
8 |
LOJK J, MARC J. Roles of non-canonical Wnt signalling pathways in bone biology[J]. Int J Mol Sci, 2021, 22(19): 10840.
|
9 |
FORD C E, PUNNIA-MOORTHY G, HENRY C E, et al. The non-canonical Wnt ligand, Wnt5a, is upregulated and associated with epithelial to mesenchymal transition in epithelial ovarian cancer[J]. Gynecol Oncol, 2014, 134(2): 338-345.
|
10 |
PENG C J, ZHANG X L, YU H L, et al. Wnt5a as a predictor in poor clinical outcome of patients and a mediator in chemoresistance of ovarian cancer[J]. Int J Gynecol Cancer, 2011, 21(2): 280-288.
|
11 |
JIN P, SONG Y, YU G Y. The role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer: a clinical and experimental study[J]. Anal Cell Pathol (Amst), 2018, 2018: 6567081.
|
12 |
HENRY C E, LLAMOSAS E, DJORDJEVIC A, et al. Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer[J]. Oncogenesis, 2016, 5(5): e226.
|
13 |
ZHANG H L, QIU J R, YE C P, et al. ROR1 expression correlated with poor clinical outcome in human ovarian cancer[J]. Sci Rep, 2014, 4: 5811.
|
14 |
KARIN-KUJUNDZIC V, KARDUM V, SOLA I M, et al. Dishevelled family proteins in serous ovarian carcinomas: a clinicopathologic and molecular study[J]. APMIS, 2020, 128(3): 201-210.
|
15 |
LIU R, CHENG J L, CHEN Y N, et al. Potential role and prognostic importance of dishevelled-2 in epithelial ovarian cancer[J]. Int J Gynaecol Obstet, 2017, 138(3): 304-310.
|
16 |
XU W W, GU J J, REN Q L, et al. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway[J]. Tumor Biol, 2016, 37(4): 4493-4500.
|
17 |
XIN B, JI K Q, LIU Y S, et al. NFAT overexpression correlates with CA72-4 and poor prognosis of ovarian clear-cell carcinoma subtype[J]. Reprod Sci, 2021, 28(3): 745-756.
|
18 |
CHEN S, WANG J, GOU W F, et al. The involvement of RhoA and Wnt5a in the tumorigenesis and progression of ovarian epithelial carcinoma[J]. Int J Mol Sci, 2013, 14(12): 24187-24199.
|
19 |
CHEHOVER M, REICH R, DAVIDSON B. Expression of Wnt pathway molecules is associated with disease outcome in metastatic high-grade serous carcinoma[J]. Virchows Arch, 2020, 477(2): 249-258.
|
20 |
KOTRBOVÁ A, OVESNÁ P, GYBEL' T, et al. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer[J]. Theranostics, 2020, 10(2): 537-552.
|
21 |
AZIMIAN-ZAVAREH V, DEHGHANI-GHOBADI Z, EBRAHIMI M, et al. Wnt5a modulates integrin expression in a receptor-dependent manner in ovarian cancer cells[J]. Sci Rep, 2021, 11(1): 5885.
|
22 |
MENCK K, HEINRICHS S, BADEN C, et al. The WNT/ROR pathway in cancer: from signaling to therapeutic intervention[J]. Cells, 2021, 10(1): 142.
|
23 |
HENRY C E, EMMANUEL C, LAMBIE N, et al. Distinct patterns of stromal and tumor expression of ROR1 and ROR2 in histological subtypes of epithelial ovarian cancer[J]. Transl Oncol, 2017, 10(3): 346-356.
|
24 |
ZHANG S P, CUI B, LAI H, et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy[J]. Proc Natl Acad Sci USA, 2014, 111(48): 17266-17271.
|
25 |
FANG X, CHEN C Q, XIA F Z, et al. CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/cyclin D2 signaling[J]. J Hematol Oncol, 2016, 9(1): 124.
|
26 |
ASEM M, YOUNG A M, OYAMA C, et al. Host Wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis[J]. Cancer Res, 2020, 80(5): 1156-1170.
|
27 |
LUO M, ZHOU L, ZHAN S J, et al. ALPL regulates the aggressive potential of high grade serous ovarian cancer cells via a non-canonical Wnt pathway[J]. Biochem Biophys Res Commun, 2019, 513(2): 528-533.
|
28 |
QI H, SUN B C, ZHAO X L, et al. Wnt5a promotes vasculogenic mimicry and epithelial-mesenchymal transition via protein kinase Cα in epithelial ovarian cancer[J]. Oncol Rep, 2014, 32(2): 771-779.
|
29 |
AL-ALEM L F, MCCORD L A, SOUTHARD R C, et al. Activation of the PKC pathway stimulates ovarian cancer cell proliferation, migration, and expression of MMP7 and MMP10[J]. Biol Reprod, 2013, 89(3): 73.
|
30 |
TANG Y Y, HE Y, ZHANG P, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis[J]. Mol Cancer, 2018, 17(1): 77.
|
31 |
WANG S Z, WEI H, ZHANG S L. Dickkopf-4 is frequently overexpressed in epithelial ovarian carcinoma and promotes tumor invasion[J]. BMC Cancer, 2017, 17(1): 455.
|
32 |
DEHGHANI-GHOBADI Z, SHEIKH HASANI S, AREFIAN E, et al. Wnt5a and TGFβ1 converges through YAP1 activity and integrin alpha v up-regulation promoting epithelial to mesenchymal transition in ovarian cancer cells and mesothelial cell activation[J]. Cells, 2022, 11(2): 237.
|
33 |
PARK H W, KIM Y C, YU B, et al. Alternative Wnt signaling activates YAP/TAZ[J]. Cell, 2015, 162(4): 780-794.
|
34 |
VESKIMÄE K, SCARAVILLI M, NIININEN W, et al. Expression analysis of platinum sensitive and resistant epithelial ovarian cancer patient samples reveals new candidates for targeted therapies[J]. Transl Oncol, 2018, 11(5): 1160-1170.
|
35 |
HUNG T H, HSU S C, CHENG C Y, et al. Wnt5a regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway[J]. Oncotarget, 2014, 5(23): 12273-12290.
|
36 |
ZHANG K, SONG H X, YANG P, et al. Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling[J]. Cell Prolif, 2015, 48(2): 249-258.
|
37 |
HUANG L, JIN Y, FENG S J, et al. Role of Wnt/β-catenin, Wnt/c-Jun N-terminal kinase and Wnt/Ca2+ pathways in cisplatin-induced chemoresistance in ovarian cancer[J]. Exp Ther Med, 2016, 12(6): 3851-3858.
|
38 |
HUANG W, YANG S, CHENG Y S, et al. Terfenadine resensitizes doxorubicin activity in drug-resistant ovarian cancer cells via an inhibition of CaMKⅡ/CREB1 mediated ABCB1 expression[J]. Front Oncol, 2022, 12: 1068443.
|
39 |
WANG Y L, XU C L, WANG Y, et al. MicroRNA-365 inhibits ovarian cancer progression by targeting Wnt5a[J]. Am J Cancer Res, 2017, 7(5): 1096-1106.
|
40 |
JENEI V, SHERWOOD V, HOWLIN J, et al. A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion[J]. Proc Natl Acad Sci USA, 2009, 106(46): 19473-19478.
|
41 |
MOORE K N, GUNDERSON C C, SABBATINI P, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer[J]. Gynecol Oncol, 2019, 154(2): 294-301.
|
42 |
CHOI M Y, WIDHOPF G F Ⅱ, WU C C, et al. Pre-clinical specificity and safety of UC-961, a first-in-class monoclonal antibody targeting ROR1[J]. Clin Lymphoma Myeloma Leuk, 2015, 15: S167-S169.
|
43 |
CHOI M Y, WIDHOPF G F Ⅱ, GHIA E M, et al. Phase Ⅰ trial: cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia[J]. Cell Stem Cell, 2018, 22(6): 951-959.e3.
|
44 |
GHIA E M, RASSENTI L Z, CHOI M Y, et al. High expression level of ROR1 and ROR1-signaling associates with venetoclax resistance in chronic lymphocytic leukemia[J]. Leukemia, 2022, 36(6): 1609-1618.
|
45 |
ZHANG S P, ZHANG H, GHIA E M, et al. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody[J]. Proc Natl Acad Sci USA, 2019, 116(4): 1370-1377.
|
46 |
LIU D L, KAUFMANN G F, BREITMEYER J B, et al. The anti-ROR1 monoclonal antibody zilovertamab inhibits the proliferation of ovarian and endometrial cancer cells[J]. Pharmaceutics, 2022, 14(4): 837.
|
47 |
WU D, YU X Y, WANG J, et al. Ovarian cancer stem cells with high ROR1 expression serve as a new prophylactic vaccine for ovarian cancer[J]. J Immunol Res, 2019, 2019: 9394615.
|
48 |
OSORIO-RODRÍGUEZ D A, CAMACHO B A, RAMÍREZ-SEGURA C. Anti-ROR1 CAR-T cells: architecture and performance[J]. Front Med (Lausanne), 2023, 10: 1121020.
|
49 |
LEE B K, WAN Y H, CHIN Z L, et al. Developing ROR1 targeting CAR-T cells against solid tumors in preclinical studies[J]. Cancers, 2022, 14(15): 3618.
|
50 |
SRIVASTAVA S, FURLAN S N, JAEGER-RUCKSTUHL C A, et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade[J]. Cancer Cell, 2021, 39(2): 193-208.e10.
|
51 |
JOSHI N, LIU D L, DICKSON K A, et al. An organotypic model of high-grade serous ovarian cancer to test the anti-metastatic potential of ROR2 targeted Polyion complex nanoparticles[J]. J Mater Chem B, 2021, 9(44): 9123-9135.
|
52 |
CHEN X Y, CHEN Y M, LIN X Y, et al. The drug combination of SB202190 and SP600125 significantly inhibit the growth and metastasis of olaparib-resistant ovarian cancer cell[J]. Curr Pharm Biotechnol, 2018, 19(6): 506-513.
|
53 |
OHTA T, TAKAHASHI T, SHIBUYA T, et al. Inhibition of the Rho/ROCK pathway enhances the efficacy of cisplatin through the blockage of hypoxia-inducible factor-1α in human ovarian cancer cells[J]. Cancer Biol Ther, 2012, 13(1): 25-33.
|