| [1] |
JOHNSON D E, BURTNESS B, LEEMANS C R, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92.
|
| [2] |
CHOW L Q M. Head and neck cancer[J]. N Engl J Med, 2020, 382(1): 60-72.
|
| [3] |
TABERNA M, MENA M, PAVÓN M A, et al. Human papillomavirus-related oropharyngeal cancer[J]. Ann Oncol, 2017, 28(10): 2386-2398.
|
| [4] |
GRABOYES E M, KOMPELLI A R, NESKEY D M, et al. Association of treatment delays with survival for patients with head and neck cancer: a systematic review[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(2): 166-177.
|
| [5] |
SOLOMON B, YOUNG R J, RISCHIN D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments[J]. Semin Cancer Biol, 2018, 52(Pt 2): 228-240.
|
| [6] |
HANNA G J, O'NEILL A, SHIN K Y, et al. Neoadjuvant and adjuvant nivolumab and lirilumab in patients with recurrent, resectable squamous cell carcinoma of the head and neck[J]. Clin Cancer Res, 2022, 28(3): 468-478.
|
| [7] |
MACHIELS J P, RENÉ LEEMANS C, GOLUSINSKI W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2020, 31(11): 1462-1475.
|
| [8] |
CRAMER J D, BURTNESS B, LE Q T, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16(11): 669-683.
|
| [9] |
TANG Z M, ZHAO P R, WANG H, et al. Biomedicine meets Fenton chemistry[J]. Chem Rev, 2021, 121(4): 1981-2019.
|
| [10] |
LIN X H, SONG J B, CHEN X Y, et al. Ultrasound-activated sensitizers and applications[J]. Angew Chem Int Ed, 2020, 59(34): 14212-14233.
|
| [11] |
XU M M, ZHOU L Q, ZHENG L, et al. Sonodynamic therapy-derived multimodal synergistic cancer therapy[J]. Cancer Lett, 2021, 497: 229-242.
|
| [12] |
ZHANG Y, ZHANG C F, QIAN W L, et al. Recent advances in MOF-based nanozymes: synthesis, activities, and bioapplications[J]. Biosens Bioelectron, 2024, 263: 116593.
|
| [13] |
HU Y H, ZHENG Y J, LIU C, et al. Mitochondrial MOF regulates energy metabolism in heart failure via ATP5B hyperacetylation[J]. Cell Rep, 2024, 43(10): 114839.
|
| [14] |
MALEKI A, SEYEDHAMZEH M, YUAN M, et al. Titanium-based nanoarchitectures for sonodynamic therapy-involved multimodal treatments[J]. Small, 2023, 19(12): e2206253.
|
| [15] |
XIE X X, ZHANG J X, WANG Y, et al. Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy[J]. Mater Today Bio, 2023, 24: 100926.
|
| [16] |
ZHANG N S, ZENG W L, XU Y X, et al. Pyroptosis induction with nanosonosensitizer-augmented sonodynamic therapy combined with PD-L1 blockade boosts efficacy against liver cancer[J]. Adv Healthc Mater, 2024, 13(7): e2302606.
|
| [17] |
JIANG H, YANG K W, ZHAO X X, et al. Highly stable Zr(IV)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography[J]. J Am Chem Soc, 2021, 143(1): 390-398.
|
| [18] |
PARK J, JIANG Q, FENG D W, et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy[J]. J Am Chem Soc, 2016, 138(10): 3518-3525.
|
| [19] |
LÁZARO I A, WELLS C J R, FORGAN R S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery[J]. Angew Chem Int Ed, 2020, 59(13): 5211-5217.
|
| [20] |
HAO F, YAN Z Y, YAN X P. Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks[J]. Chemosphere, 2022, 307: 135680.
|
| [21] |
SNETKOV P, ZAKHAROVA K, MOROZKINA S, et al. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer[J]. Polymers (Basel), 2020, 12(8): 1800.
|
| [22] |
GHOSH B, BISWAS S. Polymeric micelles in cancer therapy: state of the art[J]. J Control Release, 2021, 332: 127-147.
|
| [23] |
KYU SHIM M, YANG S, SUN I C, et al. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: preclinical evidence for safe and effective drug delivery[J]. Adv Drug Deliv Rev, 2022, 183: 114177.
|
| [24] |
LIU Y T, SUN Z J. Turning cold tumors into hot tumors by improving T-cell infiltration[J]. Theranostics, 2021, 11(11): 5365-5386.
|
| [25] |
LIU C P, WANG Y C, LI L M, et al. Engineered extracellular vesicles and their mimetics for cancer immunotherapy[J]. J Control Release, 2022, 349: 679-698.
|
| [26] |
HIAM-GALVEZ K J, ALLEN B M, SPITZER M H. Systemic immunity in cancer[J]. Nat Rev Cancer, 2021, 21(6): 345-359.
|
| [27] |
HUANG Z C, LIU L P, ZHU Z Y, et al. Tuning surface valences of nanoengagers to enhance their structural advantages for efficiently redirecting T cells against solid tumors[J]. ACS Nano, 2025, 19(1): 381-395.
|
| [28] |
MIN H, WANG J, QI Y Q, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy[J]. Adv Mater, 2019, 31(15): e1808200.
|
| [29] |
WANG Y F, SHI J Q, XIN M H, et al. Cell-drug conjugates[J]. Nat Biomed Eng, 2024, 8(11): 1347-1365.
|
| [30] |
GAO H B, SUN L, WANG H, et al. In situ non-canonical activation and sensitization of cGAS-STING pathway with manganese telluride nanosheets[J]. Biomaterials, 2025, 318: 123170.
|
| [31] |
SUN Z H, LIU J, LI Y Y, et al. Aggregation-induced-emission photosensitizer-loaded nano-superartificial dendritic cells with directly presenting tumor antigens and reversed immunosuppression for photodynamically boosted immunotherapy[J]. Adv Mater, 2023, 35(3): e2208555.
|