
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (12): 1687-1693.doi: 10.3969/j.issn.1674-8115.2025.12.015
• 综述 • 上一篇
收稿日期:2025-06-05
接受日期:2025-09-28
出版日期:2025-12-28
发布日期:2025-12-28
通讯作者:
袁良喜,副主任医师,博士;电子信箱:yuanlx116@163.com。基金资助:
CHEN Liang, WU Biao, YUAN Liangxi(
)
Received:2025-06-05
Accepted:2025-09-28
Online:2025-12-28
Published:2025-12-28
Contact:
YUAN Liangxi, E-mail: yuanlx116@163.com.Supported by:摘要:
动脉粥样硬化是一种慢性血管炎症,其病灶分散且位置深在,是心血管疾病发病的主要原因。高效的药物递送是提升其治疗效果的关键要素。纳米材料凭借其独特的理化特性, 在药物递送中优势显著,通过功能化修饰可实现靶向递送,增强药物在病变部位的富集,减少脱靶分布,提高治疗安全性与有效性。纳米递送系统按材料特性可分为脂基纳米载体、聚合物纳米载体、无机纳米载体和仿生纳米载体四大类,其多功能复合体系设计更支持多模态协同治疗,如光热转换、磁响应成像引导治疗等,对提高动脉粥样硬化治疗效率具有重要意义。该文系统梳理了纳米载体在动脉粥样硬化治疗中的应用研究进展,重点探讨不同类型纳米载体的构建、靶向机制及多模态应用,涵盖了从基础研究到临床前及部分临床实验的代表性成果,并展望未来基于纳米技术的治疗策略发展方向,以期为该领域的进一步研究与临床转化提供参考。
中图分类号:
陈亮, 吴彪, 袁良喜. 基于纳米材料的递送系统在动脉粥样硬化诊疗中的应用进展[J]. 上海交通大学学报(医学版), 2025, 45(12): 1687-1693.
CHEN Liang, WU Biao, YUAN Liangxi. Application progress of nanomaterial-based delivery systems in atherosclerosis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1687-1693.
| Type | Advantage | Limitation | Research phase |
|---|---|---|---|
| Lipid-based NPs | High drug loading capacity, gene delivery capability, natural targeting, and high biocompatibility | Low stability, and shortened in vivo circulation time | Predominantly preclinical investigations, with selective progression to clinical trials |
| Polymer NPs | Tunable structural properties, stimuli-responsive behavior, and broad-spectrum drug compatibility | Multi-step synthesis process, limited in vivo stability, and potential toxicity risks | Comprehensive preclinical investigation with selective, clinical translation-oriented studies |
| Inorganic NPs | Precise controllability, theranostic integration, and high stability | Potential toxicity risks, incompletely characterized metabolic pathways, and undetermined long-term safety profiles | Predominantly preclinical investigation, with a limited subset progressing to clinical trials |
| Biomimetic NPs | High biocompatibility, prolonged circulation time, and homology-directed targeting | Complex multi-step synthesis, restricted membrane availability, and challenges in standardization | Active preclinical research, remaining largely in the preclinical phase without clinical progression |
表1 不同递送系统综合对比
Tab 1 Comprehensive comparison of different delivery systems
| Type | Advantage | Limitation | Research phase |
|---|---|---|---|
| Lipid-based NPs | High drug loading capacity, gene delivery capability, natural targeting, and high biocompatibility | Low stability, and shortened in vivo circulation time | Predominantly preclinical investigations, with selective progression to clinical trials |
| Polymer NPs | Tunable structural properties, stimuli-responsive behavior, and broad-spectrum drug compatibility | Multi-step synthesis process, limited in vivo stability, and potential toxicity risks | Comprehensive preclinical investigation with selective, clinical translation-oriented studies |
| Inorganic NPs | Precise controllability, theranostic integration, and high stability | Potential toxicity risks, incompletely characterized metabolic pathways, and undetermined long-term safety profiles | Predominantly preclinical investigation, with a limited subset progressing to clinical trials |
| Biomimetic NPs | High biocompatibility, prolonged circulation time, and homology-directed targeting | Complex multi-step synthesis, restricted membrane availability, and challenges in standardization | Active preclinical research, remaining largely in the preclinical phase without clinical progression |
| [1] | HETHERINGTON I, TOTARY-JAIN H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations[J]. Mol Ther, 2022, 30(10): 3106-3117. |
| [2] | MUSHENKOVA N V, SUMMERHILL V I, ZHANG D W, et al. Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque[J]. Int J Mol Sci, 2020, 21(8): 2992. |
| [3] | NEWMAN C B, PREISS D, TOBERT J A, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association[J]. Arterioscler Thromb Vasc Biol, 2019, 39(2): e38-e81. |
| [4] | LEE M, CHENG C Y, WU Y L, et al. Association between intensity of low-density lipoprotein cholesterol reduction with statin-based therapies and secondary stroke prevention: a meta-analysis of randomized clinical trials[J]. JAMA Neurol, 2022, 79(4): 349. |
| [5] | DENG X J, WANG J H, YU S S, et al. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers[J]. Exploration, 2024, 4(3): 20230090. |
| [6] | GAO C, HUANG Q X, LIU C H, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines[J]. Nat Commun, 2020, 11: 2622. |
| [7] | WANG Y-F, ZHANG C Q, YANG K N, et al. Transportation of AIE-visualized nanoliposomes is dominated by the protein corona[J]. Natl Sci Rev, 2021, 8(6): nwab068. |
| [8] | HO D, LYND T O, JUN C, et al. miR-146a encapsulated liposomes reduce vascular inflammatory responses through decrease of ICAM-1 expression, macrophage activation, and foam cell formation[J]. Nanoscale, 2023, 15(7): 3461-3474. |
| [9] | BENNE N, MARTINS CARDOSO R, BOYLE A L, et al. Complement receptor targeted liposomes encapsulating the liver X receptor agonist GW3965 accumulate in and stabilize atherosclerotic plaques[J]. Adv Healthc Mater, 2020, 9(10): 2000043. |
| [10] | LI Z X, ZHU H M, LIU H, et al. Evolocumab loaded bio-liposomes for efficient atherosclerosis therapy[J]. J Nanobiotechnol, 2023, 21(1): 158. |
| [11] | VAN DER VALK F M, VAN WIJK D F, LOBATTO M E, et al. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration[J]. Nanomed Nanotechnol Biol Med, 2015, 11(5): 1039-1046. |
| [12] | ZHANG W L, HE H L, LIU J P, et al. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone ⅡA discoidal and spherical biomimetic high density lipoproteins[J]. Biomaterials, 2013, 34(1): 306-319. |
| [13] | GUO Y H, YUAN W M, YU B L, et al. Synthetic high-density lipoprotein-mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression[J]. EBioMedicine, 2018, 28: 225-233. |
| [14] | ZHANG X Q, HUANG G L. Synthetic lipoprotein as nano-material vehicle in the targeted drug delivery[J]. Drug Deliv, 2017, 24(2): 16-21. |
| [15] | RONG T, WEI B, AO M Y, et al. Enhanced anti-atherosclerotic efficacy of pH-responsively releasable ganglioside GM3 delivered by reconstituted high-density lipoprotein[J]. Int J Mol Sci, 2021, 22(24): 13624. |
| [16] | ZHENG K H, KAISER Y, VAN OLDEN C C, et al. No benefit of HDL mimetic CER-001 on carotid atherosclerosis in patients with genetically determined very low HDL levels[J]. Atherosclerosis, 2020, 311: 13-19. |
| [17] | ITA K. Polyplexes for gene and nucleic acid delivery: progress and bottlenecks[J]. Eur J Pharm Sci, 2020, 150: 105358. |
| [18] | ZHANG L B, BEATTY A, LU L, et al. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles[J]. Mater Sci Eng C, 2020, 111: 110768. |
| [19] | WANG A Q, YUE K, ZHONG W S, et al. Targeted delivery of rapamycin and inhibition of platelet adhesion with multifunctional peptide nanoparticles for atherosclerosis treatment[J]. J Control Release, 2024, 376: 753-765. |
| [20] | WANG Y, LIU J, TONG C G, et al. Gene therapy by virus-like self-spooling toroidal DNA condensates for revascularization of hindlimb ischemia[J]. J Nanobiotechnol, 2024, 22(1): 413. |
| [21] | LI J J, WANG K X, PAN W, et al. Targeted imaging in atherosclerosis[J]. Anal Chem, 2022, 94(36): 12263-12273. |
| [22] | LIN Y Z, LIU J J, CHONG S Y, et al. Dual-function nanoscale coordination polymer nanoparticles for targeted diagnosis and therapeutic delivery in atherosclerosis[J]. Small, 2024, 20(47): 2401659. |
| [23] | JEON H, KIM J, LEE Y M, et al. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system[J]. J Control Release, 2016, 231: 68-76. |
| [24] | MOU N L, DUAN X M, QU K, et al. Macrophage membrane spontaneously encapsulated cyclodextrin-based nanomedicines for improving lipid metabolism and inflammation in atherosclerosis[J]. ACS Appl Mater Interfaces, 2024, 16(37): 49660-49672. |
| [25] | WANG H H, ZHAO R Z, PENG L, et al. A dual-function CD47-targeting nano-drug delivery system used to regulate immune and anti-inflammatory activities in the treatment of atherosclerosis[J]. Adv Healthc Mater, 2024, 13(22): 2400752. |
| [26] | GUSTÀ M F, EDEL M J, SALAZAR V A, et al. Exploiting endocytosis for transfection of mRNA for cytoplasmatic delivery using cationic gold nanoparticles[J]. Front Immunol, 2023, 14: 1128582. |
| [27] | KIM H M, PARK J H, CHOI Y J, et al. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs[J]. RSC Adv, 2023, 13(8): 5529-5537. |
| [28] | BOOMI P, GANESAN R, PRABU POORANI G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions[J]. Int J Nanomed, 2020, 15: 7553-7568. |
| [29] | LEE Y N, WU Y J, SU C H, et al. Fluorescent gold nanoclusters possess multiple actions against atherosclerosis[J]. Redox Biol, 2024, 78: 103427. |
| [30] | KHARLAMOV A N, TYURNINA A E, VESELOVA V S, et al. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial[J]. Nanoscale, 2015, 7(17): 8003-8015. |
| [31] | ZHANG H, LIU X L, FAN H M. Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents[J]. Nano Res, 2023, 16(11): 12531-12542. |
| [32] | PELLICO J, ELLIS C M, DAVIS J J. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging[J]. Contrast Medium Mol Imag, 2019, 2019: 1845637. |
| [33] | TA H T, LI Z, HAGEMEYER C E, et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast[J]. Biomaterials, 2017, 134: 31-42. |
| [34] | ZOU L, ZHANG Y, CHERAGA N, et al. M2 macrophage membrane-camouflaged Fe3O4-Cy7 nanoparticles with reduced immunogenicity for targeted NIR/MR imaging of atherosclerosis[J]. Small, 2024, 20(8): 2304110. |
| [35] | LIN X F, DONG Q H, CHANG Y L, et al. Transition-metal-based nanozymes for biosensing and catalytic tumor therapy[J]. Anal Bioanal Chem, 2024, 416(27): 5933-5948. |
| [36] | WANG S, ZHANG J W, LI W, et al. Hyaluronic acid-guided assembly of ceria nanozymes as plaque-targeting ROS scavengers for anti-atherosclerotic therapy[J]. Carbohydr Polym, 2022, 296: 119940. |
| [37] | WANG L J, ZHANG X Q, ZHANG H R, et al. Novel metal-free nanozyme for targeted imaging and inhibition of atherosclerosis via macrophage autophagy activation to prevent vulnerable plaque formation and rupture[J]. ACS Appl Mater Interfaces, 2024, 16(39): 51944-51956. |
| [38] | HUANG X, ZHOU Y, et al. Selenium-doped copper formate nanozymes with antisenescence and oxidative stress reduction for atherosclerosis treatment[J]. Nano Lett, 2025, 25(7): 2662-2669. |
| [39] | WU Z Y, XU Z J, PU H J, et al. Degradable co-delivery nanoplatforms for inflammation-targeted therapy against atherosclerosis[J]. Appl Mater Today, 2021, 25: 101214. |
| [40] | WEI M, JIANG Q J, BIAN S, et al. Dual-mode-driven nanomotors targeting inflammatory macrophages for the MRI and synergistic treatment of atherosclerosis[J]. J Nanobiotechnol, 2025, 23(1): 54. |
| [41] | ZHANG J H, WANG Z W, LIAO Y H, et al. Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis[J]. Acta Biomater, 2025, 192: 377-393. |
| [42] | HE Z S, CHEN W, HU K, et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment[J]. Nat Nanotechnol, 2024, 19(9): 1386-1398. |
| [43] | CHEN L, HONG W Q, REN W Y, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles[J]. Sig Transduct Target Ther, 2021, 6: 225. |
| [44] | YAO Y Y, CHEN H T, BARKAT A, et al. A zombie macrophage-based "Trojan horse" enhances the effect of efferocytosis through immune regulation for atherosclerosis treatment[J]. Adv Funct Materials, 2024, 34(27): 2315034. |
| [45] | HUANG R Z, ZHANG L J, LI X S, et al. Anti-CXCR2 antibody-coated nanoparticles with an erythrocyte-platelet hybrid membrane layer for atherosclerosis therapy[J]. J Control Release, 2023, 356: 610-622. |
| [46] | LI L H, LU Y, JIANG C Y, et al. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth Sulfide@Mesoporous silica core-shell nanoparticles[J]. Adv Funct Materials, 2018, 28(5): 1704623. |
| [47] | LOHCHAROENKAL W, WANG L Y, CHEN Y C, et al. Protein nanoparticles as drug delivery carriers for cancer therapy[J]. BioMed Res Int, 2014, 2014: 180549. |
| [48] | KONDYLIS P, SCHLICKSUP C J, ZLOTNICK A, et al. Analytical techniques to characterize the structure, properties, and assembly of virus capsids[J]. Anal Chem, 2019, 91(1): 622-636. |
| [49] | XU R T, OUYANG L X, CHEN H Y, et al. Recent advances in biomolecular detection based on aptamers and nanoparticles[J]. Biosensors, 2023, 13(4): 474. |
| [50] | HE F, WEN N C, XIAO D P, et al. Aptamer-based targeted drug delivery systems: current potential and challenges[J]. Curr Med Chem, 2020, 27(13): 2189-2219. |
| [51] | WANG Y H, HUANG G J, HOU Q, et al. Cell surface-nanoengineering for cancer targeting immunoregulation and precise immunotherapy[J]. WIREs Nanomed Nanobiotechnol, 2023, 15(4): e1875. |
| [52] | SHI Y, DONG M, WU Y, et al. An elastase-inhibiting, plaque-targeting and neutrophil-hitchhiking liposome against atherosclerosis[J]. Acta Biomater, 2024, 173: 470-481. |
| [53] | YE Y C, HUANG L, WANG K J, et al. Transplantation of engineered endothelial progenitor cells with H19 overexpression promotes arterial reendothelialization and inhibits neointimal hyperplasia[J]. J Tissue Eng, 2025, 16: 20417314251315959. |
| [54] | CHEN S Y, SU Y, ZHANG M J, et al. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors[J]. J Nanobiotechnol, 2023, 21(1): 140. |
| [55] | IAFISCO M, ALOGNA A, MIRAGOLI M, et al. Cardiovascular nanomedicine: the route ahead[J]. Nanomedicine, 2019, 14(18): 2391-2394. |
| [56] | ZHANG Z, DALAN R, HU Z Y, et al. Reactive oxygen species scavenging nanomedicine for the treatment of ischemic heart disease[J]. Adv Mater, 2022, 34(35): 2202169. |
| [1] | 鲁佳艺, 刘锦喆, 郭尚春, 陶诗聪. 纳米材料通过降低活性氧水平促进骨组织再生的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 487-492. |
| [2] | 刘美志, 王子杨, 姜雅宁, 弥萌, 孙永宁. 番泻苷A对2型糖尿病小鼠动脉粥样硬化斑块形成及5-羟色胺信号分子表达的影响[J]. 上海交通大学学报(医学版), 2024, 44(8): 991-998. |
| [3] | 司春婴, 王建茹, 李晓辉, 王永霞, 关怀敏. 基于单细胞测序技术解析冠状动脉粥样硬化患者平滑肌细胞的细胞间通信及关键基因[J]. 上海交通大学学报(医学版), 2024, 44(2): 169-182. |
| [4] | 杨晨凯, 李威, 曹向乾, 何磊, 李圣洲, 沈兵. 基于纳米技术的膀胱癌治疗方法研究进展[J]. 上海交通大学学报(医学版), 2023, 43(12): 1562-1568. |
| [5] | 赵倩, 王颖, 谢依热·哈木拉提, 古丽洁合热·吐尔逊, 李晓梅, 杨毅宁. 睡眠质量与心脑血管疾病发病中、低危人群颈动脉粥样硬化的相关性分析[J]. 上海交通大学学报(医学版), 2023, 43(11): 1366-1373. |
| [6] | 张晓文, 王祎, 张婵, 张迪, 贠航, 黄笛. Pcsk9基因干扰对高脂诱导的大鼠非酒精性脂肪性肝病合并动脉粥样硬化的影响[J]. 上海交通大学学报(医学版), 2022, 42(2): 150-157. |
| [7] | 谭颖超, 杨珺玥, 王莉娜. 白细胞介素-1B-511C/T基因多态性与冠状动脉粥样硬化性心脏病关联的meta分析[J]. 上海交通大学学报(医学版), 2022, 42(2): 197-204. |
| [8] | 王昊, 王然, 巴乾. 食品中二氧化钛纳米材料对消化道组织及肠道微生物群影响的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(2): 225-229. |
| [9] | 刘霞, 温弗乐, 章雅青. 冠心病患者参加门诊心脏康复的障碍水平调研及相关因素分析[J]. 上海交通大学学报(医学版), 2022, 42(10): 1448-1457. |
| [10] | 赵倩, 高霖, 王长谦, 张俊峰, 张绘莉, 卓杨. 冠状动脉粥样硬化性心脏病患者外周血单核细胞亚群CX3CR1表达的变化及意义[J]. 上海交通大学学报(医学版), 2021, 41(3): 328-333. |
| [11] | 陈胜男,申 燕. 不对称二甲基精氨酸在慢性肾脏病患者动脉粥样硬化发生和发展中的作用[J]. 上海交通大学学报(医学版), 2020, 40(8): 1131-1136. |
| [12] | 范益博1, 2,幺天保1,马 珺1,袁安彩1,杜勇平1,邵 琴1,卜 军1. 血清维生素D与冠状动脉粥样硬化性心脏病患者冠状动脉病变严重程度及短期预后的相关性研究[J]. 上海交通大学学报(医学版), 2020, 40(7): 889-893. |
| [13] | 葛晓乾1,李 晓2,赵辉林2,孙贝贝2,许建荣2,刘晓晟2. 术前颈动脉斑块动态增强磁共振成像对支架置入后再狭窄发生的预测价值[J]. 上海交通大学学报(医学版), 2020, 40(7): 901-907. |
| [14] | 徐 洪*,朱鹏雄*,周衍再,裘佳培,刘 俊#,赵 强#. 微创冠状动脉旁路移植术的远期疗效分析[J]. 上海交通大学学报(医学版), 2020, 40(5): 656-661. |
| [15] | 陈 蓦,陈 俊,陈世益. 基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(4): 530-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||