上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (12): 1562-1568.doi: 10.3969/j.issn.1674-8115.2023.12.012
• 综述 • 上一篇
杨晨凯1(), 李威2, 曹向乾1, 何磊2,3, 李圣洲1, 沈兵1()
收稿日期:
2023-08-10
接受日期:
2023-11-20
出版日期:
2023-12-28
发布日期:
2024-02-01
通讯作者:
沈兵
E-mail:derekkaikai@163.com;urodrshenbing@shsmu.edu.cn
作者简介:
杨晨凯(1998—),男,硕士生;电子信箱:derekkaikai@163.com。
基金资助:
YANG Chenkai1(), LI Wei2, CAO Xiangqian1, HE Lei2,3, LI Shengzhou1, SHEN Bing1()
Received:
2023-08-10
Accepted:
2023-11-20
Online:
2023-12-28
Published:
2024-02-01
Contact:
SHEN Bing
E-mail:derekkaikai@163.com;urodrshenbing@shsmu.edu.cn
Supported by:
摘要:
膀胱癌是泌尿系统最常见的恶性肿瘤。目前,膀胱癌的临床治疗方案主要包括手术、化学治疗(化疗)、放射治疗(放疗)、免疫治疗、靶向治疗、光动力治疗和联合治疗等。膀胱癌的传统治疗和给药方案主要取决于肿瘤的分期和转移程度。然而,在非手术治疗过程中药物缺乏特异性和靶向性,一旦剂量控制不当,药物攻击癌细胞时对正常细胞造成损伤等会导致疗效差、不良反应多等问题。纳米医学是一门新兴的交叉学科,利用纳米材料和技术的纳米医药具有靶向递送和高效低毒等优点,为传统治疗提供了颠覆性的技术。许多纳米技术已经成为医学领域临床研究的热点。纳米颗粒可以通过改变其表面性质和功能化修饰来实现主动或被动靶向,将药物精准递送到靶器官内的靶细胞(例如膀胱癌细胞),从而提高药物的局部浓度,减少对正常细胞的损伤,进而提高治疗效果。该文综述了膀胱癌经典治疗和新型治疗方案进展,并重点介绍了纳米技术在膀胱癌治疗中的潜在应用及未来发展方向,为膀胱癌的个性化治疗和临床转化提供参考。
中图分类号:
杨晨凯, 李威, 曹向乾, 何磊, 李圣洲, 沈兵. 基于纳米技术的膀胱癌治疗方法研究进展[J]. 上海交通大学学报(医学版), 2023, 43(12): 1562-1568.
YANG Chenkai, LI Wei, CAO Xiangqian, HE Lei, LI Shengzhou, SHEN Bing. Research progress in the treatment of bladder cancer based on nanotechnology[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1562-1568.
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | TEOH J Y, HUANG J, KO W Y, et al. Global trends of bladder cancer incidence and mortality, and their associations with tobacco use and gross domestic product per capita[J]. Eur Urol, 2020, 78(6): 893-906. |
3 | SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. |
4 | CHEN W. Cancer statistics: updated cancer burden in China[J]. Chin J Cancer Res, 2015, 27(1): 1. |
5 | AMIN H A A, KOBAISI M H, SAMIR R M. Schistosomiasis and bladder cancer in Egypt: truths and myths[J]. Open Access Maced J Med Sci, 2019, 7(23): 4023-4029. |
6 | MOCH H, CUBILLA A L, HUMPHREY P A, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours[J]. Eur Urol, 2016, 70(1): 93-105. |
7 | BOUCHELOUCHE K. Diagnostic applications of nuclear medicine: kidney and bladder cancer[M/OL]//STRAUSS H W, MARIANI G, VOLTERRANI D, et al. Nuclear Oncology. Cham: Springer International Publishing, 2017: 839-881[2023-08-09]. https://doi.org/10.1007/978-3-319-26236-9_20. |
8 | BARTON M K. High morbidity and mortality found for high-risk, non-muscle-invasive bladder cancer[J]. CA Cancer J Clin, 2013, 63(6): 371-372. |
9 | BABJUK M, BÖHLE A, BURGER M, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016[J]. Eur Urol, 2017, 71(3): 447-461. |
10 | LIU B, GAO X, HAN B, et al. Mouse model to explore the therapeutic effect of nano-doxorubicin drug delivery system on bladder cancer[J]. J Nanosci Nanotechnol, 2021, 21(2): 914-920. |
11 | DOHERTY A P, TRENDELL-SMITH N, STIRLING R, et al. Perivesical fat necrosis after adjuvant intravesical chemotherapy[J]. BJU Int, 1999, 83(4): 420-423. |
12 | MESSING E M, TANGEN C M, LERNER S P, et al. Effect of intravesical instillation of gemcitabine vs saline immediately following resection of suspected low-grade non-muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial[J]. JAMA, 2018, 319(18): 1880-1888. |
13 | LAMM D L, BLUMENSTEIN B A, CRISSMAN J D, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent Ta, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study[J]. J Urol, 2000, 163(4): 1124-1129. |
14 | PETTENATI C, INGERSOLL M A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer[J]. Nat Rev Urol, 2018, 15(10): 615-625. |
15 | LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. |
16 | WITJES J A, BABJUK M, BELLMUNT J, et al. EAU-ESMO consensus statements on the management of advanced and variant bladder cancer: an international collaborative multistakeholder effort: under the auspices of the EAU-ESMO guidelines committees[J]. Eur Urol, 2020, 77(2): 223-250. |
17 | ALFRED W J, MAX B H, CARRIÓN A, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2023 guidelines[J]. Eur Urol, 2024, 85(1): 17-31. |
18 | PLOUSSARD G, DANESHMAND S, EFSTATHIOU J A, et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review[J]. Eur Urol, 2014, 66(1): 120-137. |
19 | CANIL C. Bladder cancer[M/OL]//ENNA S J, BYLUND D B. xPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier, 2007: 1-4[2023-08-09]. https://doi.org/10.1016/B978-008055232-3.60818-9. |
20 | BAJORIN D F, WITJES J A, GSCHWEND J E, et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma[J]. N Engl J Med, 2021, 384(22): 2102-2114. |
21 | SARFRAZ M, QAMAR S, REHMAN M U, et al. Nano-formulation based intravesical drug delivery systems: an overview of versatile approaches to improve urinary bladder diseases[J]. Pharmaceutics, 2022, 14(9): 1909. |
22 | VAN DER HEIJDEN M S, LORIOT Y, DURÁN I, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma: a long-term overall survival and safety update from the phase 3 IMvigor211 clinical trial[J]. Eur Urol, 2021, 80(1): 7-11. |
23 | DONIN N M, LENIS A T, HOLDEN S, et al. Immunotherapy for the treatment of urothelial carcinoma[J]. J Urol, 2017, 197(1): 14-22. |
24 | LI Q, LIU Y, HUANG Z, et al. Triggering immune system with nanomaterials for cancer immunotherapy[J]. Front Bioeng Biotechnol, 2022, 10: 878524. |
25 | SHARMA P, RETZ M, SIEFKER-RADTKE A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2017, 18(3): 312-322. |
26 | POWLES T, O'DONNELL P H, MASSARD C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study[J]. JAMA Oncol, 2017, 3(9): e172411. |
27 | APOLO A B, INFANTE J R, BALMANOUKIAN A, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ⅰb study[J]. J Clin Oncol, 2017, 35(19): 2117-2124. |
28 | PREDINA J, ERUSLANOV E, JUDY B, et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery[J]. Proc Natl Acad Sci U S A, 2013, 110(5): E415-E424. |
29 | MILLING L, ZHANG Y, IRVINE D J. Delivering safer immunotherapies for cancer[J]. Adv Drug Deliv Rev, 2017, 114: 79-101. |
30 | LORIOT Y, NECCHI A, PARK S H, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma[J]. N Engl J Med, 2019, 381(4): 338-348. |
31 | ROBINSON B D, VLACHOSTERGIOS P J, BHINDER B, et al. Upper tract urothelial carcinoma has a luminal-papillary T-cell depleted contexture and activated FGFR3 signaling[J]. Nat Commun, 2019, 10(1): 2977. |
32 | SHENG X, YAN X, WANG L, et al. Open-label, multicenter, phase Ⅱ study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J]. Clin Cancer Res, 2021, 27(1): 43-51. |
33 | SARFATY M, ROSENBERG J E. Antibody-drug conjugates in urothelial carcinomas[J]. Curr Oncol Rep, 2020, 22(2): 13. |
34 | ROSENBERG J E, O'DONNELL P H, BALAR A V, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy[J]. J Clin Oncol, 2019, 37(29): 2592-2600. |
35 | HU H, FENG W, QIAN X, et al. Emerging nanomedicine-enabled/enhanced nanodynamic therapies beyond traditional photodynamics[J]. Adv Mater, 2021, 33(12): e2005062. |
36 | INOUE K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. Int J Urol, 2017, 24(2): 97-101. |
37 | DIAMOND I, MCDONAGH A, WILSON C, et al. Photodynamic therapy of malignant tumours[J]. Lancet, 1972, 300(7788): 1175-1177. |
38 | LEE J Y, DIAZ R R, CHO K S, et al. Efficacy and safety of photodynamic therapy for recurrent, high grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette-Guérin immunotherapy[J]. J Urol, 2013, 190(4): 1192-1199. |
39 | XIONG W, QI L, JIANG N, et al. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy[J]. ACS Appl Mater Interfaces, 2021, 13(7): 8026-8041. |
40 | WANG L, YANG D, LV J Y, et al. Application of carbon nanoparticles in lymph node dissection and parathyroid protection during thyroid cancer surgeries: a systematic review and meta-analysis[J]. Onco Targets Ther, 2017, 10: 1247-1260. |
41 | SHI J J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1): 20-37. |
42 | MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46(12 Pt 1): 6387-6392. |
43 | MI P, CABRAL H, KATAOKA K. Ligand-installed nanocarriers toward precision therapy[J]. Adv Mater, 2020, 32(13): e1902604. |
44 | GERLOWSKI L E, JAIN R K. Microvascular permeability of normal and neoplastic tissues[J]. Microvasc Res, 1986, 31(3): 288-305. |
45 | KULKARNI A, CHANDRASEKAR V, NATARAJAN S K, et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer[J]. Nat Biomed Eng, 2018, 2(8): 589-599. |
46 | DE LA TORRE P, PÉREZ-LORENZO M J, ALCÁZAR-GARRIDO Á, et al. Cell-based nanoparticles delivery systems for targeted cancer therapy: lessons from anti-angiogenesis treatments[J]. Molecules, 2020, 25(3): 715. |
47 | LI X, CHEN L, LUAN S, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment[J]. Semin Cancer Biol, 2022, 86(Pt 2): 873-885. |
48 | XU X, LIU K, JIAO B, et al. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer[J]. J Control Release, 2020, 324: 493-504. |
49 | ZHENG B, LIU Z, WANG H, et al. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer[J]. J Control Release, 2022, 351: 834-846. |
50 | MULLAPUDI S S, RAHMAT J N, MAHENDRAN R, et al. Tumor-targeting albumin nanoparticles as an efficacious drug delivery system and potential diagnostic tool in non-muscle-invasive bladder cancer therapy[J]. Nanomedicine, 2022, 46: 102600. |
51 | AKGÜL A, AHMED N, RAZA A, et al. A fractal fractional model for cervical cancer due to human papillomavirus infection[J]. Fractals, 2021, 29(5): 2140015. |
52 | SPRANGER S, GAJEWSKI T F. Impact of oncogenic pathways on evasion of antitumour immune responses[J]. Nat Rev Cancer, 2018, 18(3): 139-147. |
53 | SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. |
54 | KLEMM F, MAAS R R, BOWMAN R L, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells[J]. Cell, 2020, 181(7): 1643-1660.e17. |
55 | TERÁN-NAVARRO H, ZEOLI A, SALINES-CUEVAS D, et al. Gold glyconanoparticles combined with 91‒99 peptide of the bacterial toxin, listeriolysin O, are efficient immunotherapies in experimental bladder tumors[J]. Cancers (Basel), 2022, 14(10): 2413. |
56 | HUNTER B A, EUSTACE A, IRLAM J J, et al. Expression of hypoxia-inducible factor-1α predicts benefit from hypoxia modification in invasive bladder cancer[J]. Br J Cancer, 2014, 111(3): 437-443. |
57 | MARTINEZ-OUTSCHOORN U E, LIN Z, TRIMMER C, et al. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors[J]. Cell Cycle, 2011, 10(15): 2504-2520. |
58 | LIN T, ZHAO X, ZHAO S, et al. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia[J]. Theranostics, 2018, 8(4): 990-1004. |
59 | YU C, ZHANG Y, WANG N, et al. Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA[J]. Biomater Res, 2022, 26(1): 6. |
60 | CHEN Y, GAO D Y, HUANG L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies[J]. Adv Drug Deliv Rev, 2015, 81: 128-141. |
61 | SHEN H, SUN T, FERRARI M. Nanovector delivery of siRNA for cancer therapy[J]. Cancer Gene Ther, 2012, 19(6): 367-373. |
62 | SHAHIDI M, ABAZARI O, DAYATI P, et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy[J]. Front Bioeng Biotechnol, 2022, 10: 949704. |
63 | ZHANG L, WAN S S, LI C X, et al. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe3+/Fe2+ conversion[J]. Nano Lett, 2018, 18(12): 7609-7618. |
64 | TANG Z, ZHANG H, LIU Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy[J]. Adv Mater, 2017, 29(47). doi: 10.1002/adma.201701683. |
65 | CHEN W H, YU K J, JHOU J W, et al. Glucose/glutathione Co-triggered tumor hypoxia relief and chemodynamic therapy to enhance photothermal therapy in bladder cancer[J]. ACS Appl Bio Mater, 2021, 4(10): 7485-7496. |
[1] | 李倩玉, 郭文韵, 钱逸斐, 李松玲, 朱子俊, 刘艳丰. ASGR1在肝细胞癌中的意义及机制研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1107-1114. |
[2] | 吴凯敏, 麻静, 赵旭赟. 间歇性禁食联合产热脂肪活化防治小鼠肥胖作用研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1131-1144. |
[3] | 朱涵菁, 殷弘凡, 尤思洁, 杨艳. 前列腺癌患者内分泌治疗相关不良反应的潜在剖面分析[J]. 上海交通大学学报(医学版), 2023, 43(9): 1186-1193. |
[4] | 李郡如, 欧阳彦, 谢静远. 肠道菌群在IgA肾病发病与治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1044-1048. |
[5] | 周婉桢, 滕银成. 非经典Wnt通路在卵巢癌中的作用与潜在治疗意义研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1056-1063. |
[6] | 赵艳红, 王传萍. 哮喘表型中CD4+ T细胞亚群的研究综述:分子机制和生物治疗选择[J]. 上海交通大学学报(医学版), 2023, 43(8): 1064-1070. |
[7] | 张硕渊, 李春波. 运动治疗抑郁障碍的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 916-922. |
[8] | 王青, 韩晓, 张晓波. 表观遗传修饰调控肺炎免疫应答的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 931-938. |
[9] | 王颖雯, 李小玲, 代佳佳, 刘芳, 黄剑峰, 王立波, 张晓波, 冯瑞. 儿童重症支气管哮喘的流行病学特征及危险因素:一项单中心前瞻性队列研究[J]. 上海交通大学学报(医学版), 2023, 43(6): 665-672. |
[10] | 于莉, 苏显都, 张敏, 李雅慧, 王乐. 基于生物学分析构建及验证棕榈酰化相关酶长链非编码RNA的肝癌预后风险模型[J]. 上海交通大学学报(医学版), 2023, 43(6): 747-754. |
[11] | 陈瑾, 傅瑶. 人角膜内皮细胞自体再生的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 775-780. |
[12] | 杨海霞, 徐丽丽, 王博成, 陈敏洁. 磁共振引导的咀嚼肌疼痛放松训练疗效评估[J]. 上海交通大学学报(医学版), 2023, 43(5): 540-544. |
[13] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
[14] | 徐瀛濂, 田静, 张翔, 赵顺英. 气道上皮细胞在哮喘发病机制中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 619-623. |
[15] | 魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 624-630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||