
上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (12): 1562-1568.doi: 10.3969/j.issn.1674-8115.2023.12.012
杨晨凯1(
), 李威2, 曹向乾1, 何磊2,3, 李圣洲1, 沈兵1(
)
收稿日期:2023-08-10
接受日期:2023-11-20
出版日期:2023-12-28
发布日期:2024-02-01
通讯作者:
沈 兵,电子信箱:urodrshenbing@shsmu.edu.cn。作者简介:杨晨凯(1998—),男,硕士生;电子信箱:derekkaikai@163.com。
基金资助:
YANG Chenkai1(
), LI Wei2, CAO Xiangqian1, HE Lei2,3, LI Shengzhou1, SHEN Bing1(
)
Received:2023-08-10
Accepted:2023-11-20
Online:2023-12-28
Published:2024-02-01
Contact:
SHEN Bing, E-mail: urodrshenbing@shsmu.edu.cn.Supported by:摘要:
膀胱癌是泌尿系统最常见的恶性肿瘤。目前,膀胱癌的临床治疗方案主要包括手术、化学治疗(化疗)、放射治疗(放疗)、免疫治疗、靶向治疗、光动力治疗和联合治疗等。膀胱癌的传统治疗和给药方案主要取决于肿瘤的分期和转移程度。然而,在非手术治疗过程中药物缺乏特异性和靶向性,一旦剂量控制不当,药物攻击癌细胞时对正常细胞造成损伤等会导致疗效差、不良反应多等问题。纳米医学是一门新兴的交叉学科,利用纳米材料和技术的纳米医药具有靶向递送和高效低毒等优点,为传统治疗提供了颠覆性的技术。许多纳米技术已经成为医学领域临床研究的热点。纳米颗粒可以通过改变其表面性质和功能化修饰来实现主动或被动靶向,将药物精准递送到靶器官内的靶细胞(例如膀胱癌细胞),从而提高药物的局部浓度,减少对正常细胞的损伤,进而提高治疗效果。该文综述了膀胱癌经典治疗和新型治疗方案进展,并重点介绍了纳米技术在膀胱癌治疗中的潜在应用及未来发展方向,为膀胱癌的个性化治疗和临床转化提供参考。
中图分类号:
杨晨凯, 李威, 曹向乾, 何磊, 李圣洲, 沈兵. 基于纳米技术的膀胱癌治疗方法研究进展[J]. 上海交通大学学报(医学版), 2023, 43(12): 1562-1568.
YANG Chenkai, LI Wei, CAO Xiangqian, HE Lei, LI Shengzhou, SHEN Bing. Research progress in the treatment of bladder cancer based on nanotechnology[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1562-1568.
| 1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
| 2 | TEOH J Y, HUANG J, KO W Y, et al. Global trends of bladder cancer incidence and mortality, and their associations with tobacco use and gross domestic product per capita[J]. Eur Urol, 2020, 78(6): 893-906. |
| 3 | SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. |
| 4 | CHEN W. Cancer statistics: updated cancer burden in China[J]. Chin J Cancer Res, 2015, 27(1): 1. |
| 5 | AMIN H A A, KOBAISI M H, SAMIR R M. Schistosomiasis and bladder cancer in Egypt: truths and myths[J]. Open Access Maced J Med Sci, 2019, 7(23): 4023-4029. |
| 6 | MOCH H, CUBILLA A L, HUMPHREY P A, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours[J]. Eur Urol, 2016, 70(1): 93-105. |
| 7 | BOUCHELOUCHE K. Diagnostic applications of nuclear medicine: kidney and bladder cancer[M/OL]//STRAUSS H W, MARIANI G, VOLTERRANI D, et al. Nuclear Oncology. Cham: Springer International Publishing, 2017: 839-881[2023-08-09]. https://doi.org/10.1007/978-3-319-26236-9_20. |
| 8 | BARTON M K. High morbidity and mortality found for high-risk, non-muscle-invasive bladder cancer[J]. CA Cancer J Clin, 2013, 63(6): 371-372. |
| 9 | BABJUK M, BÖHLE A, BURGER M, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016[J]. Eur Urol, 2017, 71(3): 447-461. |
| 10 | LIU B, GAO X, HAN B, et al. Mouse model to explore the therapeutic effect of nano-doxorubicin drug delivery system on bladder cancer[J]. J Nanosci Nanotechnol, 2021, 21(2): 914-920. |
| 11 | DOHERTY A P, TRENDELL-SMITH N, STIRLING R, et al. Perivesical fat necrosis after adjuvant intravesical chemotherapy[J]. BJU Int, 1999, 83(4): 420-423. |
| 12 | MESSING E M, TANGEN C M, LERNER S P, et al. Effect of intravesical instillation of gemcitabine vs saline immediately following resection of suspected low-grade non-muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial[J]. JAMA, 2018, 319(18): 1880-1888. |
| 13 | LAMM D L, BLUMENSTEIN B A, CRISSMAN J D, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent Ta, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study[J]. J Urol, 2000, 163(4): 1124-1129. |
| 14 | PETTENATI C, INGERSOLL M A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer[J]. Nat Rev Urol, 2018, 15(10): 615-625. |
| 15 | LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. |
| 16 | WITJES J A, BABJUK M, BELLMUNT J, et al. EAU-ESMO consensus statements on the management of advanced and variant bladder cancer: an international collaborative multistakeholder effort: under the auspices of the EAU-ESMO guidelines committees[J]. Eur Urol, 2020, 77(2): 223-250. |
| 17 | ALFRED W J, MAX B H, CARRIÓN A, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2023 guidelines[J]. Eur Urol, 2024, 85(1): 17-31. |
| 18 | PLOUSSARD G, DANESHMAND S, EFSTATHIOU J A, et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review[J]. Eur Urol, 2014, 66(1): 120-137. |
| 19 | CANIL C. Bladder cancer[M/OL]//ENNA S J, BYLUND D B. xPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier, 2007: 1-4[2023-08-09]. https://doi.org/10.1016/B978-008055232-3.60818-9. |
| 20 | BAJORIN D F, WITJES J A, GSCHWEND J E, et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma[J]. N Engl J Med, 2021, 384(22): 2102-2114. |
| 21 | SARFRAZ M, QAMAR S, REHMAN M U, et al. Nano-formulation based intravesical drug delivery systems: an overview of versatile approaches to improve urinary bladder diseases[J]. Pharmaceutics, 2022, 14(9): 1909. |
| 22 | VAN DER HEIJDEN M S, LORIOT Y, DURÁN I, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma: a long-term overall survival and safety update from the phase 3 IMvigor211 clinical trial[J]. Eur Urol, 2021, 80(1): 7-11. |
| 23 | DONIN N M, LENIS A T, HOLDEN S, et al. Immunotherapy for the treatment of urothelial carcinoma[J]. J Urol, 2017, 197(1): 14-22. |
| 24 | LI Q, LIU Y, HUANG Z, et al. Triggering immune system with nanomaterials for cancer immunotherapy[J]. Front Bioeng Biotechnol, 2022, 10: 878524. |
| 25 | SHARMA P, RETZ M, SIEFKER-RADTKE A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2017, 18(3): 312-322. |
| 26 | POWLES T, O'DONNELL P H, MASSARD C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study[J]. JAMA Oncol, 2017, 3(9): e172411. |
| 27 | APOLO A B, INFANTE J R, BALMANOUKIAN A, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ⅰb study[J]. J Clin Oncol, 2017, 35(19): 2117-2124. |
| 28 | PREDINA J, ERUSLANOV E, JUDY B, et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery[J]. Proc Natl Acad Sci U S A, 2013, 110(5): E415-E424. |
| 29 | MILLING L, ZHANG Y, IRVINE D J. Delivering safer immunotherapies for cancer[J]. Adv Drug Deliv Rev, 2017, 114: 79-101. |
| 30 | LORIOT Y, NECCHI A, PARK S H, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma[J]. N Engl J Med, 2019, 381(4): 338-348. |
| 31 | ROBINSON B D, VLACHOSTERGIOS P J, BHINDER B, et al. Upper tract urothelial carcinoma has a luminal-papillary T-cell depleted contexture and activated FGFR3 signaling[J]. Nat Commun, 2019, 10(1): 2977. |
| 32 | SHENG X, YAN X, WANG L, et al. Open-label, multicenter, phase Ⅱ study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J]. Clin Cancer Res, 2021, 27(1): 43-51. |
| 33 | SARFATY M, ROSENBERG J E. Antibody-drug conjugates in urothelial carcinomas[J]. Curr Oncol Rep, 2020, 22(2): 13. |
| 34 | ROSENBERG J E, O'DONNELL P H, BALAR A V, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy[J]. J Clin Oncol, 2019, 37(29): 2592-2600. |
| 35 | HU H, FENG W, QIAN X, et al. Emerging nanomedicine-enabled/enhanced nanodynamic therapies beyond traditional photodynamics[J]. Adv Mater, 2021, 33(12): e2005062. |
| 36 | INOUE K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. Int J Urol, 2017, 24(2): 97-101. |
| 37 | DIAMOND I, MCDONAGH A, WILSON C, et al. Photodynamic therapy of malignant tumours[J]. Lancet, 1972, 300(7788): 1175-1177. |
| 38 | LEE J Y, DIAZ R R, CHO K S, et al. Efficacy and safety of photodynamic therapy for recurrent, high grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette-Guérin immunotherapy[J]. J Urol, 2013, 190(4): 1192-1199. |
| 39 | XIONG W, QI L, JIANG N, et al. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy[J]. ACS Appl Mater Interfaces, 2021, 13(7): 8026-8041. |
| 40 | WANG L, YANG D, LV J Y, et al. Application of carbon nanoparticles in lymph node dissection and parathyroid protection during thyroid cancer surgeries: a systematic review and meta-analysis[J]. Onco Targets Ther, 2017, 10: 1247-1260. |
| 41 | SHI J J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1): 20-37. |
| 42 | MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46(12 Pt 1): 6387-6392. |
| 43 | MI P, CABRAL H, KATAOKA K. Ligand-installed nanocarriers toward precision therapy[J]. Adv Mater, 2020, 32(13): e1902604. |
| 44 | GERLOWSKI L E, JAIN R K. Microvascular permeability of normal and neoplastic tissues[J]. Microvasc Res, 1986, 31(3): 288-305. |
| 45 | KULKARNI A, CHANDRASEKAR V, NATARAJAN S K, et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer[J]. Nat Biomed Eng, 2018, 2(8): 589-599. |
| 46 | DE LA TORRE P, PÉREZ-LORENZO M J, ALCÁZAR-GARRIDO Á, et al. Cell-based nanoparticles delivery systems for targeted cancer therapy: lessons from anti-angiogenesis treatments[J]. Molecules, 2020, 25(3): 715. |
| 47 | LI X, CHEN L, LUAN S, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment[J]. Semin Cancer Biol, 2022, 86(Pt 2): 873-885. |
| 48 | XU X, LIU K, JIAO B, et al. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer[J]. J Control Release, 2020, 324: 493-504. |
| 49 | ZHENG B, LIU Z, WANG H, et al. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer[J]. J Control Release, 2022, 351: 834-846. |
| 50 | MULLAPUDI S S, RAHMAT J N, MAHENDRAN R, et al. Tumor-targeting albumin nanoparticles as an efficacious drug delivery system and potential diagnostic tool in non-muscle-invasive bladder cancer therapy[J]. Nanomedicine, 2022, 46: 102600. |
| 51 | AKGÜL A, AHMED N, RAZA A, et al. A fractal fractional model for cervical cancer due to human papillomavirus infection[J]. Fractals, 2021, 29(5): 2140015. |
| 52 | SPRANGER S, GAJEWSKI T F. Impact of oncogenic pathways on evasion of antitumour immune responses[J]. Nat Rev Cancer, 2018, 18(3): 139-147. |
| 53 | SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. |
| 54 | KLEMM F, MAAS R R, BOWMAN R L, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells[J]. Cell, 2020, 181(7): 1643-1660.e17. |
| 55 | TERÁN-NAVARRO H, ZEOLI A, SALINES-CUEVAS D, et al. Gold glyconanoparticles combined with 91‒99 peptide of the bacterial toxin, listeriolysin O, are efficient immunotherapies in experimental bladder tumors[J]. Cancers (Basel), 2022, 14(10): 2413. |
| 56 | HUNTER B A, EUSTACE A, IRLAM J J, et al. Expression of hypoxia-inducible factor-1α predicts benefit from hypoxia modification in invasive bladder cancer[J]. Br J Cancer, 2014, 111(3): 437-443. |
| 57 | MARTINEZ-OUTSCHOORN U E, LIN Z, TRIMMER C, et al. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors[J]. Cell Cycle, 2011, 10(15): 2504-2520. |
| 58 | LIN T, ZHAO X, ZHAO S, et al. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia[J]. Theranostics, 2018, 8(4): 990-1004. |
| 59 | YU C, ZHANG Y, WANG N, et al. Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA[J]. Biomater Res, 2022, 26(1): 6. |
| 60 | CHEN Y, GAO D Y, HUANG L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies[J]. Adv Drug Deliv Rev, 2015, 81: 128-141. |
| 61 | SHEN H, SUN T, FERRARI M. Nanovector delivery of siRNA for cancer therapy[J]. Cancer Gene Ther, 2012, 19(6): 367-373. |
| 62 | SHAHIDI M, ABAZARI O, DAYATI P, et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy[J]. Front Bioeng Biotechnol, 2022, 10: 949704. |
| 63 | ZHANG L, WAN S S, LI C X, et al. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe3+/Fe2+ conversion[J]. Nano Lett, 2018, 18(12): 7609-7618. |
| 64 | TANG Z, ZHANG H, LIU Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy[J]. Adv Mater, 2017, 29(47). doi: 10.1002/adma.201701683. |
| 65 | CHEN W H, YU K J, JHOU J W, et al. Glucose/glutathione Co-triggered tumor hypoxia relief and chemodynamic therapy to enhance photothermal therapy in bladder cancer[J]. ACS Appl Bio Mater, 2021, 4(10): 7485-7496. |
| [1] | 李倩玉, 钱逸斐, 李松玲, 朱子俊, 覃雯莉, 刘艳丰, 邱必军. Zeste 12抑制基因在肝细胞癌中的功能及机制[J]. 上海交通大学学报(医学版), 2025, 45(9): 1138-1148. |
| [2] | 王静怡, 邓佳丽, 朱仪, 丁心怡, 郭嘉婧, 王中领. 新型pH响应性锰基纳米探针用于乳腺癌铁死亡及磁共振成像实验研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1183-1193. |
| [3] | 江怡, 黄晨浩, 李祉良, 吴珺玮, 赵任, 张弢. 1例KRAS突变的结直肠癌患者术前接受化疗联合免疫治疗的效果报道[J]. 上海交通大学学报(医学版), 2025, 45(9): 1256-1260. |
| [4] | 何苏荟, 赵银龙, 张家毓. 端粒酶基因治疗对压力超负荷心力衰竭小鼠的影响[J]. 上海交通大学学报(医学版), 2025, 45(8): 949-956. |
| [5] | 林桐, 陶怡, 金诗炜, 孙淼, 糜坚青. 血浆置换联合经典化学治疗对多发性骨髓瘤患者肾功能的影响[J]. 上海交通大学学报(医学版), 2025, 45(7): 823-828. |
| [6] | 孟靖, 谢玉婷, 左佳鑫, 熊屏. 纳米工程化T细胞体系的构建及其对口腔鳞状细胞癌的体外治疗研究[J]. 上海交通大学学报(医学版), 2025, 45(7): 866-873. |
| [7] | 陈子旋, 刘敏. 肾细胞癌免疫细胞治疗的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 916-925. |
| [8] | 高欣洁, 刘艳, 王大威. 地中海贫血基因治疗研究进展及思考[J]. 上海交通大学学报(医学版), 2025, 45(5): 540-548. |
| [9] | 张钲佳, 李小敏, 周鑫, 马海荣, 艾松涛. 高阶磁共振功能成像评估骨与软组织肿瘤价值初探[J]. 上海交通大学学报(医学版), 2025, 45(5): 585-596. |
| [10] | 李文妙, 邢莉, 潘英瑜, 黄滢, 杨国访, 刘德达. 下颌第一磨牙根管直径和锥度的锥形束CT测量分析[J]. 上海交通大学学报(医学版), 2025, 45(5): 597-604. |
| [11] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [12] | 黄周轩, 邵静波. 慢性原发性免疫性血小板减少症的治疗研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 508-516. |
| [13] | 毛晨宙, 张瑞赟, 陈海戈, 尹芳菲, 左小磊. 膀胱癌相关miRNA灵敏检测的框架核酸线性放大平台构建[J]. 上海交通大学学报(医学版), 2025, 45(3): 253-260. |
| [14] | 周至宜, 赵浩, 缪亦锋, 朱池豪, 杨溪, 王思源, 冯军峰, 邱永明. 全神经内镜技术在后颅窝病变手术中的应用[J]. 上海交通大学学报(医学版), 2025, 45(3): 365-372. |
| [15] | 张涤凡, 王明慧, 赵洁, 万江波, 黄方, 郝思国. B7基因修饰的白血病细胞外泌体的抗白血病效应[J]. 上海交通大学学报(医学版), 2025, 45(2): 129-137. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||