›› 2013, Vol. 33 ›› Issue (2): 204-.doi: 10.3969/j.issn.1674-8115.2013.02.016

• 论著(预防医学) • 上一篇    下一篇

基于谷歌趋势的乙型肝炎预测模型

杨艳红1, 曾 庆1, 赵 寒2, 易 娟2, 李 勤2, 夏 宇2   

  1. 1.重庆医科大学 公共卫生与管理学院卫生统计教研室, 重庆 400016;2.重庆市疾病预防控制中心, 重庆 400042
  • 出版日期:2013-02-28 发布日期:2013-03-07
  • 通讯作者: 曾 庆, 电子信箱: zengqing1@gmail.com。
  • 作者简介:杨艳红(1986—), 女, 硕士生; 电子信箱: yangyanhong0805@sina.com。
  • 基金资助:

    重庆市卫生局科技计划项目(2011-2-583)

Hepatitis B prediction model based on Google trends

YANG Yan-hong1, ZENG Qing1, ZHAO Han2, YI Juan2, LI Qin2, XIA Yu2   

  1. 1.Department of Medical Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China; 2.Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
  • Online:2013-02-28 Published:2013-03-07
  • Supported by:

    Science and Technology Foundation of Chongqing Municipal Health Bureau, 2011-2-583

摘要:

目的 探讨结合谷歌趋势进行预测的状态空间模型应用于乙型肝炎的可行性。方法 采用SAS 9.13软件进行数据分析和建模。以2005年1月2日—2010年12月26日的重庆市乙型肝炎实际发病数和谷歌趋势数据建立状态空间模型,并用2011年1月2日—6月19日的实际发病数据进行模型验证。结果 重庆市乙型肝炎发病情况适合用结合谷歌趋势指数进行预测的状态空间模型,预测值与实际值的平均相对误差为7.44%,预测效果良好。结论 结合网络搜索引擎的数据对乙型肝炎的预测是可行的。

关键词: 谷歌趋势, 状态空间模型, 预测, 乙型肝炎

Abstract:

Objective To investigate the feasibility to predict hepatitis B with the state space model in combination of Google trends. Methods SAS 9.13 software was used for data analysis and modeling. The state space model was established with the data of actual incidence of hepatitis B in Chongqing and those from Google trends between January 2, 2005 and December 26, 2010, and the data of actual incidence of hepatitis B between January 2, 2011 and June 19, 2011 was used for model validation. Results The state space model in combination with Google trends was useful to predict the prevalence of hepatitis B in Chongqing. The mean relative error for predictive value and actual value was 7.44%, which indicated a favorable prediction result. Conclusion It is feasible to predict hepatitis B in combination with data from network based searching.

Key words: Google trends, state space model, prediction, hepatitis B