1 |
Kendler KS. The phenomenology of major depression and the representativeness and nature of DSM criteria[J]. Am J Psychiatry, 2016, 173(8): 771-780.
|
2 |
Bennik EC, Nederhof E, Ormel J, et al. Anhedonia and depressed mood in adolescence: course, stability, and reciprocal relation in the TRAILS study[J]. Eur Child Adolesc Psychiatry, 2014, 23(7): 579-586.
|
3 |
Winer ES, Nadorff MR, Ellis TE, et al. Anhedonia predicts suicidal ideation in a large psychiatric inpatient sample[J]. Psychiatry Res, 2014, 218(1-2): 124-128.
|
4 |
Barch DM, Whalen D, Gilbert K, et al. Neural indicators of anhedonia: predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression[J]. Biol Psychiatry, 2019, 85(10): 863-871.
|
5 |
Felger JC, Li Z, Haroon E, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression[J]. Mol Psychiatry, 2016, 21(10): 1358-1365.
|
6 |
Boyle CC, Kuhlman KR, Dooley LN, et al. Inflammation and dimensions of reward processing following exposure to the influenza vaccine[J]. Psychoneuroendocrinology, 2019, 102: 16-23.
|
7 |
Murakami Y, Ishibashi T, Tomita E, et al. Depressive symptoms as a side effect of Interferon-α therapy induced by induction of indoleamine 2, 3-dioxygenase 1[J]. Sci Rep, 2016, 6: 29920.
|
8 |
Bergamini G, Mechtersheimer J, Azzinnari D, et al. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice[J]. Neurobiol Stress, 2018, 8: 42-56.
|
9 |
Rømer Thomsen K, Whybrow PC, Kringelbach ML. Reconceptualizing anhedonia: novel perspectives on balancing the pleasure networks in the human brain[J]. Front Behav Neurosci, 2015, 9: 49.
|
10 |
Zhang B, Lin P, Shi HQ, et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis[J]. Brain Imaging Behav, 2016, 10(3): 920-939.
|
11 |
Freed RD, Mehra LM, Laor D, et al. Anhedonia as a clinical correlate of inflammation in adolescents across psychiatric conditions[J]. World J Biol Psychiatry, 2019, 20(9): 712-722.
|
12 |
Szczypiński JJ, Gola M. Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia?[J]. Rev Neurosci, 2018, 29(7): 727-744.
|
13 |
Wenzel JM, Cheer JF. Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling[J]. Neuropsychopharmacology, 2018, 43(1): 103-115.
|
14 |
Yan C, Yang T, Yu QJ, et al. Rostral medial prefrontal dysfunctions and consummatory pleasure in schizophrenia: a meta-analysis of functional imaging studies[J]. Psychiatry Res, 2015, 231(3): 187-196.
|
15 |
Der-Avakian A, D'Souza MS, Potter DN, et al. Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats[J]. Psychopharmacology (Berl), 2017, 234(9-10): 1603-1614.
|
16 |
Yin LJ, Xu XD, Chen G, et al. Inflammation and decreased functional connectivity in a widely-distributed network in depression: centralized effects in the ventral medial prefrontal cortex[J]. Brain Behav Immun, 2019, 80: 657-666.
|
17 |
Felger JC, Mun J, Kimmel HL, et al. Chronic interferon-α decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates[J]. Neuropsychopharmacology, 2013, 38(11): 2179-2187.
|
18 |
Felger JC, Hernandez CR, Miller AH. Levodopa reverses cytokine-induced reductions in striatal dopamine release[J]. Int J Neuropsychopharmacol, 2015, 18(4): pyu084.
|
19 |
Kim H, Chen L, Lim G, et al. Brain indoleamine 2, 3-dioxygenase contributes to the comorbidity of pain and depression[J]. J Clin Invest, 2012, 122(8): 2940-2954.
|
20 |
Salazar F, Hall L, Negm OH, et al. The mannose receptor negatively modulates the Toll-like receptor 4-aryl hydrocarbon receptor-indoleamine 2, 3-dioxygenase axis in dendritic cells affecting T helper cell polarization[J]. J Allergy Clin Immunol, 2016, 137(6): 1841-1851.e2.
|
21 |
Rodrigues FTS, de Souza MRM, Lima CNC, et al. Major depression model induced by repeated and intermittent lipopolysaccharide administration: long-lasting behavioral, neuroimmune and neuroprogressive alterations[J]. J Psychiatr Res, 2018, 107: 57-67.
|
22 |
Xie W, Cai L, Yu YH, et al. Activation of brain indoleamine 2, 3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy[J]. J Neuroinflammation, 2014, 11: 41.
|
23 |
Walker AK, Budac DP, Bisulco S, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice[J]. Neuropsychopharmacology, 2013, 38(9): 1609-1616.
|
24 |
Laumet G, Zhou WJ, Dantzer R, et al. Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain[J]. Brain Behav Immun, 2017, 66: 94-102.
|
25 |
Schwarz MJ, Guillemin GJ, Teipel SJ, et al. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer's disease patients from controls[J]. Eur Arch Psychiatry Clin Neurosci, 2013, 263(4): 345-352.
|
26 |
Monteggia LM, Gideons E, Kavalali ET. The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine[J]. Biol Psychiatry, 2013, 73(12): 1199-1203.
|
27 |
Gill JS, Jamwal S, Kumar P, et al. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: possible neurotransmitters modulation[J]. Pharmacol Rep, 2017, 69(2): 306-313.
|
28 |
Haroon E, Chen XC, Li ZH, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia[J]. Transl Psychiatry, 2018, 8(1): 189.
|
29 |
Beggiato S, Tanganelli S, Fuxe K, et al. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex[J]. Neuropharmacology, 2014, 82: 11-18.
|
30 |
Savitz J, Drevets WC, Smith CM, et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder[J]. Neuropsychopharmacology, 2015, 40(2): 463-471.
|
31 |
Vichaya EG, Laumet G, Christian DL, et al. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2, 3 dioxygenase[J]. Neuropsychopharmacology, 2019, 44(2): 364-371.
|
32 |
Antoniades C, Cunnington C, Antonopoulos A, et al. Induction of vascular GTP-cyclohydrolase Ⅰ and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis[J]. Circulation, 2011, 124(17): 1860-1870.
|
33 |
Strasser B, Sperner-Unterweger B, Fuchs D, et al. Mechanisms of inflammation-associated depression: immune influences on tryptophan and phenylalanine metabolisms[J]. Curr Top Behav Neurosci, 2017, 31: 95-115.
|
34 |
Neurauter G, Schröcksnadel K, Scholl-Bürgi S, et al. Chronic immune stimulation correlates with reduced phenylalanine turnover[J]. Curr Drug Metab, 2008, 9(7): 622-627.
|
35 |
Capuron L, Schroecksnadel S, Féart C, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms[J]. Biol Psychiatry, 2011, 70(2): 175-182.
|
36 |
Felger JC, Li L, Marvar PJ, et al. Tyrosine metabolism during interferon-α administration: association with fatigue and CSF dopamine concentrations[J]. Brain Behav Immun, 2013, 31: 153-160.
|
37 |
Haruki H, Hovius R, Pedersen MG, et al. Tetrahydrobiopterin biosynthesis as a potential target of the kynurenine pathway metabolite xanthurenic acid[J]. J Biol Chem, 2016, 291(2): 652-657.
|
38 |
Sas K, Szabó E, Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection[J]. Molecules, 2018, 23(1): E191.
|
39 |
Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine[J]. Neuropsychopharmacology, 2017, 42(1): 216-241.
|