1 |
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247.
|
2 |
SHI L, TASHIRO S. Estimation of the effects of medical diagnostic radiation exposure based on DNA damage[J]. J Radiat Res, 2018, 59(suppl_2): ii121-ii129.
|
3 |
WOOD D E, KAZEROONI E A, BAUM S L, et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(4): 412-441.
|
4 |
MAZLOUMI M, VAN GOMPEL G, KERSEMANS V, et al. The presence of contrast agent increases organ radiation dose in contrast-enhanced CT[J]. Eur Radiol, 2021, 31(10): 7540-7549.
|
5 |
PERISINAKIS K, SEIMENIS I, TZEDAKIS A, et al. Radiation burden and associated cancer risk for a typical population to be screened for lung cancer with low-dose CT: a phantom study[J]. Eur Radiol, 2018, 28(10): 4370-4378.
|
6 |
KIM Y, KIM Y K, LEE B E, et al. Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction[J]. AJR Am J Roentgenol, 2015, 204(6): 1197-1202.
|
7 |
JIANG B, LI N, SHI X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT[J]. Radiology, 2022, 303(1): 202-212.
|
8 |
SHIRI I, AKHAVANALLAF A, SANAAT A, et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network[J]. Eur Radiol, 2021, 31(3): 1420-1431.
|
9 |
CABALLERO B. Humans against obesity: who will win?[J]. Adv Nutr, 2019, 10(suppl_1): S4-S9.
|
10 |
SUN J, LI H, WANG B, et al. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection[J]. BMC Med Imaging, 2021, 21(1): 108.
|
11 |
KIM J H, YOON H J, LEE E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1): 131-138.
|
12 |
PARAKH A, CAO J, PIERCE T T, et al. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations[J]. Eur Radiol, 2021, 31(11): 8342-8353.
|
13 |
NAM J G, AHN C, CHOI H, et al. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques[J]. Eur Radiol, 2021, 31(7): 5139-5147.
|
14 |
JENSEN C T, LIU X, TAMM E P, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1): 50-57.
|
15 |
BENZ D C, BENETOS G, RAMPIDIS G, et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy[J]. J Cardiovasc Comput Tomogr, 2020, 14(5): 444-451.
|
16 |
NODA Y, KAGA T, KAWAI N, et al. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection[J]. Br J Radiol, 2021, 94(1121): 20201329.
|
17 |
JENSEN C T, GUPTA S, SALEH M M, et al. Reduced-dose deep learning reconstruction for abdominal CT of liver metastases[J]. Radiology, 2022, 303(1): 90-98.
|
18 |
蒋蓓蓓, 张亚平, 张琳, 等. 深度卷积神经网络对≤3 cm的亚实性肺腺癌CT图像病理学分型预测的可视化研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 1045-1051.
|
|
JIANG B B, ZHANG Y P, ZHANG L, et al. A visualization study of deep convolutional neural network to classify the pathological type of sub-soild pulmonary adenocarcinoma of ≤3 cm based on CT images [J]. J Shanghai Jiao Tong Univ (Med Sci), 2019, 39(9): 1045-1051.
|