
上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (8): 1145-1150.doi: 10.3969/j.issn.1674-8115.2022.08.021
收稿日期:2022-02-07
接受日期:2022-05-23
出版日期:2022-08-28
发布日期:2022-08-12
通讯作者:
傅 瑶,电子信箱:fuyaofy@sina.com。作者简介:阿婷曦(1996—),女,博士生;电子信箱:atingxi@126.com。
基金资助:
A Tingxi(
), SHAO Chunyi, FU Yao(
)
Received:2022-02-07
Accepted:2022-05-23
Online:2022-08-28
Published:2022-08-12
Contact:
FU Yao, E-mail: fuyaofy@sina.com.Supported by:摘要:
作为眼球的外部屏障,由角膜、结膜、眼睑及其上面的睑板腺、泪腺组成的眼表组织暴露于环境当中。在维持角膜光滑和湿润的同时,眼表组织还具有丰富的免疫细胞及相关因子;它们通过先天性免疫反应和适应性免疫反应对抗病原体,以及通过多种调节机制防止针对自身或无害抗原的不必要或者过度的炎症反应。免疫调节发生障碍是许多眼表疾病的基础。调节性T细胞(regulatory T cell,Treg细胞)作为眼表微环境的重要组成部分,通过多种机制积极地参与抑制针对自身、微生物和环境抗原的异常或过度的免疫反应,在诱导免疫耐受、调节机体免疫平衡方面起着重要作用。Treg细胞的功能受损和数量减少,会破坏眼表免疫稳态,进而导致或促进多种眼表疾病的发生。近年来,越来越多的研究着眼于Treg细胞在眼表疾病发生发展中的作用及相关的分子机制。部分临床前研究显示Treg细胞相关免疫疗法在眼表疾病中具有巨大的潜力。因此,该文就Treg细胞的生物学功能及其在干眼症、眼表过敏性疾病、眼表感染性疾病、角膜移植排斥和眼表组织修复方面发挥的作用进行简要综述,探讨Treg细胞疗法在眼表疾病领域的广阔应用前景。
中图分类号:
阿婷曦, 邵春益, 傅瑶. 调节性T细胞在眼表疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1145-1150.
A Tingxi, SHAO Chunyi, FU Yao. Research progress on the role of regulatory T cells in ocular surface diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1145-1150.
| 1 | GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970, 18(5): 723-737. |
| 2 | SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. |
| 3 | GALLETTI J G, GUZMÁN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J]. Immunology, 2017, 150(4): 397-407. |
| 4 | GALLETTI J G, DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf, 2021, 20: 139-162. |
| 5 | HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res, 2019, 72: 100758. |
| 6 | GROVER P, GOEL P N, GREENE M I. Regulatory T cells: regulation of identity and function[J]. Front Immunol, 2021, 12: 750542. |
| 7 | FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4): 330-336. |
| 8 | KOMATSU N, OKAMOTO K, SAWA S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis[J]. Nat Med, 2014, 20(1): 62-68. |
| 9 | LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells[J]. J Exp Med, 2006, 203(7): 1701-1711. |
| 10 | SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs: similarities and differences[J]. Immunol Rev, 2014, 259(1): 88-102. |
| 11 | RAFFIN C, VO L T, BLUESTONE J A. Treg cell-based therapies: challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3): 158-172. |
| 12 | SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol, 2017, 9(6): a022236. |
| 13 | WANG R X, YU C R, DAMBUZA I M, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. |
| 14 | CHINEN T, KANNAN A K, LEVINE A G, et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol, 2016, 17(11): 1322-1333. |
| 15 | WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4[J]. Immunity, 2014, 41(6): 1013-1025. |
| 16 | YAN Y P, ZHANG G X, GRAN B, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J]. J Immunol, 2010, 185(10): 5953-5961. |
| 17 | BAUCHÉ D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J]. Immunity, 2018, 49(2): 342-352.e5. |
| 18 | ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J, 2015, 465(2): 295-303. |
| 19 | CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646. |
| 20 | MUÑOZ-ROJAS A R, MATHIS D. Tissue regulatory T cells: regulatory chameleons[J]. Nat Rev Immunol, 2021, 21(9): 597-611. |
| 21 | CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱ definition and classification report[J]. Ocular Surf, 2017, 15(3): 276-283. |
| 22 | BRON A J, DE PAIVA C S, CHAUHAN S K, et al. TFOS DEWS Ⅱ pathophysiology report[J]. Ocular Surf, 2017, 15(3): 438-510. |
| 23 | SCHAUMBURG C S, SIEMASKO K F, DE PAIVA C S, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol, 2011, 187(7): 3653-3662. |
| 24 | CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2457-2464. |
| 25 | CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252. |
| 26 | SIEMASKO K F, GAO J P, CALDER V L, et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5434-5440. |
| 27 | RATAY M L, GLOWACKI A J, BALMERT S C, et al. Treg-recruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release, 2017, 258: 208-217. |
| 28 | SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epithelium-derived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4): 720-729. |
| 29 | YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265. |
| 30 | XU J J, WANG D D, LIU D Y, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome[J]. Blood, 2012, 120(15): 3142-3151. |
| 31 | NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+ T cells in patients with allergic conjunctivitis and in vitro attenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci, 2020, 21(21): 7861. |
| 32 | GALICIA-CARREÓN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+ regulatory T cells and CCR4+ and CCR9+ circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol, 2013, 2013: 919742. |
| 33 | SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+ CD25+ T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol, 2007, 143(4): 276-281. |
| 34 | FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymus-derived CD4+CD25+ T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int, 2008, 57(3): 241-246. |
| 35 | YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep, 2018, 25(9): 2379-2389.e3. |
| 36 | LOBO A M, AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf, 2019, 17(1): 40-49. |
| 37 | SEHRAWAT S, SUVAS S, SARANGI P P, et al. In vitro-generated antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol, 2008, 82(14): 6838-6851. |
| 38 | SUVAS S, AZKUR A K, KIM B S, et al. CD4+ CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol, 2004, 172(7): 4123-4132. |
| 39 | BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol, 2017, 199(4): 1342-1352. |
| 40 | VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol, 2017, 91(7): e02367-e02316. |
| 41 | LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J]. Transplantation, 2017, 101(10): 2277-2287. |
| 42 | CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J]. J Immunol, 2009, 182(1): 148-153. |
| 43 | HORI J, TANIGUCHI H, WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6556-6565. |
| 44 | INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep, 2016, 6: 39924. |
| 45 | INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1): 95-101. |
| 46 | HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep, 2018, 8(1): 7059. |
| 47 | TAHVILDARI M, OMOTO M, CHEN Y H, et al. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation, 2016, 100(3): 525-532. |
| 48 | SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J]. Transplantation, 2019, 103(1): 182-190. |
| 49 | LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018, 9: 585. |
| 50 | SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4): 517-524. |
| 51 | NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing[J]. J Immunol, 2016, 196(5): 2010-2014. |
| 52 | ALI N W, ZIRAK B, RODRIGUEZ R S, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell, 2017, 169(6): 1119-1129.e11. |
| 53 | LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15): 4324-4341. |
| 54 | YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 22. |
| 55 | ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089. |
| 56 | COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantation via interleukin-10[J]. Am J Transplant, 2020, 20(2): 389-398. |
| 57 | ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell, 2021, 28(7): 1248-1261.e8. |
| 58 | PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol, 2021, 11: 622810. |
| 59 | MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol, 2019, 197(1): 52-63. |
| 60 | BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051. |
| 61 | BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med, 2015, 7(315): 315ra189. |
| 62 | DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2. |
| 63 | SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J]. N Engl J Med, 2011, 365(22): 2067-2077. |
| 64 | KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med, 2011, 365(22): 2055-2066. |
| [1] | 王歆雨, 陈芊烨, 孙计萍, 鲁婷玮, 黄湘如, 孙思远, 刘媛琪, 潘厚文, 代庆刚, 沈蕾, 江凌勇. 颌骨成骨细胞调控B细胞分化的效应研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1106-1115. |
| [2] | 王治琪, 王莹. 儿童炎症性肠病相关贫血的诊治研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1232-1238. |
| [3] | 赛提尔古丽·克然木, 钱蕾, 丁思怡, 哈娜提·马合力木汗, 杨雪儿, 贾浩. 精氨酸代谢调控间充质干细胞功能的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 910-915. |
| [4] | 陈子旋, 刘敏. 肾细胞癌免疫细胞治疗的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 916-925. |
| [5] | 赵心雨, 张文超, 陈旭卓, 宋佳琪, 黄慧, 张善勇. 亚精胺对脂多糖诱导的小鼠颅骨炎症性骨溶解的作用研究[J]. 上海交通大学学报(医学版), 2025, 45(6): 673-683. |
| [6] | 杨乐, 周怡, 王钶韵, 赖娅莉. 大黄素改善阿尔茨海默病认知障碍、内质网应激和神经炎症的研究[J]. 上海交通大学学报(医学版), 2025, 45(6): 727-734. |
| [7] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [8] | 万宏劲, 胡逸斌, 王昕, 张凯, 秦安, 马培翔, 马辉, 赵杰. 甲基莲心碱通过KEAP1/NRF2/GPX4和NF-κB信号通路减轻椎间盘退行性变[J]. 上海交通大学学报(医学版), 2025, 45(3): 261-270. |
| [9] | PANDIT Roshan, 卢君瑶, 何立珩, 包玉洁, 季萍, 陈颖盈, 许洁, 王颖. 肿瘤坏死因子-α在新型冠状病毒感染合并肾损伤中的作用[J]. 上海交通大学学报(医学版), 2025, 45(1): 1-10. |
| [10] | 王晓红, 方贻儒. 双相障碍神经炎症机制的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(1): 107-112. |
| [11] | 陈铭豪, 刘沛雨, 王旋, 吴一想, 江玉瑾, 张朝阳, 张敬法. 糖尿病视网膜病变的药物治疗研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 822-829. |
| [12] | 张烨晟, 杨易静, 黄依雯, 施珑玙, 王曼媛, 陈思思. 肿瘤微环境免疫细胞调节肿瘤细胞耐药性的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 830-838. |
| [13] | 夏西茜, 丁珂珂, 张慧恒, 彭旭飞, 孙昳旻, 唐雅珺, 汤晓芳. 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 839-846. |
| [14] | 曾德洁, 陈增辉, 丁乾坤, 孙夏青, 孙琪, 赵士兵. 天然来源的多糖在干预神经发育障碍中的应用前景[J]. 上海交通大学学报(医学版), 2024, 44(6): 779-787. |
| [15] | 郑梦奕, 毛家亮, 邹治国, 张瑞雷, 张厚, 李世光. 全身免疫炎症指数及躯体化症状评分对首发心梗PCI术后发生院内主要不良心血管事件的预测价值[J]. 上海交通大学学报(医学版), 2024, 44(3): 334-341. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||